• Title/Summary/Keyword: crack shape

Search Result 621, Processing Time 0.031 seconds

Performance Evaluation Method for Facility Inspection and Diagnostic Technologies (첨단기술을 활용한 시설물 점검 및 진단 기술 검·인증을 위한 성능평가 방법론)

  • Lee, Young-Ho;Bae, Sung-Jae;Jung, Wook;Cho, Jae-Yong;Hong, Sung-Ho;Nam, Woo-Suk;Kim, Young-Min;Kim, Jung-Yeol
    • Journal of the Society of Disaster Information
    • /
    • v.16 no.1
    • /
    • pp.178-191
    • /
    • 2020
  • Purpose: This paper proposes a performance evaluation method for state-of-the-art facility inspection/diagnostic equipment through a trend survey of equipment and standardization systems of US, Japan, and Korea. This paper also suggests the priority of developing a performance evaluation method through expert interviews and surveys. Method: In this study, report for the last 5 years of FMS, state-of-the-art equipment of facility maintenance companies/safety diagnosis specialist agencies and papers/research reports/patents of NTIS were analyzed to identify recent trends of facility inspection/diagnostic equipment usages. standardization system of US, Japan, and Korea were analyzed to figure out a suitable form of a performance evaluation method for the domestic situation. And expert interview and survey were conducted to identify the priority of developing a performance evaluation method. Result: The performance evaluation method must be developed by the shape that only evaluates performance, regardless of types of equipment, on inspection item level for creative technology development. The priority of developing the performance evaluation method was identified as crack detection of concrete for durability evaluation and displacement/deformation/fatigue detection of concrete and steel for stability evaluation. Conclusion: The performance evaluation method will be developed firstly for the crack detection of concrete for durability evaluation and displacement/deformation/fatigue detection of concrete/steel for stability evaluation. In order to promote creative technology development, the performance evaluation method should be developed in a form that provides standardized specimens or testbeds and can be applied regardless of types of technologies.

Engineering Properties of Mylonite in the Youngju Area (영주지역 압쇄암의 공학적 특성 연구)

  • Kim, Sung-Wook;Choi, Eun-Kyeong;Yang, Tae-Sun;Lee, Kyu-Hwan
    • Journal of the Korean Geotechnical Society
    • /
    • v.27 no.10
    • /
    • pp.35-43
    • /
    • 2011
  • The area to be studied is the place where the main line rail way will be constructed in accordance with the scheduled construction project of Yeongju dam, and is a fold and mylonite zone over several km that is formed by ductile-shearing effect. The ductile shear zone, which has been transformed by faulting for long geological time, shows a complicated geological structure. Due to the recrystallization of mineral caused by transformation in deep underground (>8km), a mylonite zone with lamellar structure has properties distinguished from other fault zones formed by transformation near earth surface <2km). To see the properties of mylonite, this study analyzed the transformation rate of sample rocks and the shape of constriction structure accompanied with transformation. While the transformation of fault zone shows a round oblate, the mylonite zone shows a prolate form. Transformation rate in fault zone was measured to be less than 1.2 compared to the state before transformation while the measured rate in mylonite zone was 2.5 at most. Setting the surface of discontinuity as the base, the unconfined compressive strength of slickenside can be categorized in sedimentary rocks, and a change of strength was observed after water soaking over certain time. Taking into account that the weathering resistance of the rock based on mineral and chemical organization is relatively higher, its engineering properties seems to result from the shattered crack structure by crushing effect. When undertaking tunnel construction in mylonite zone, there should be a special care for the expansion of shattered cracks or the fall of strength by influx of ground water.

Development and Evaluation of Hollow-head Precast Reinforced Concrete Pile (말뚝머리 중공 프리캐스트 철근콘크리트 말뚝의 성능 평가)

  • Bang, Jin-Wook;Hyun, Jung-Hwan;Ahn, Kyung-Chul;Kim, Yun-Yong
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.21 no.2
    • /
    • pp.130-137
    • /
    • 2017
  • Due to the economic growth and development of construction technology, a role of foundation to resist heavy loads has been increased. In this present study to improve the structural performance of reinforced concrete pile, the precast HPC pile reinforced with rebar and filling concrete was developed and the strength of pile was predicted based on the limit state design method. The safety of HPC pile strength was evaluated by comparing with the design values. The geometry of HPC pile is a decagon cross section with a maximum width of 500 mm and a minimum width of 475 mm, and the hollow head of pile thickness is 70 mm. The inner area of the hollow head part was made as the square ribbed shape presented in the limit state design code in order to achieve horizontal shear strength between pile concrete and filling concrete. From the shear test results, it was found that the stable shear strength were secured without abrupt failure until maximum load stage despite the shear cracks was found. Shear strength is 135% and 119% higher than that of design value calculated from limit state design code. The driving test results of HPC pile according to the presence of additional reinforcement showed the outstanding crack resistance against impact loads condition. From the bending test results the flexural load between PHC pile and HPC pile was 1.51 times and 1.48 times higher than that of the design flexural load of conventional PHC pile.

Shear Behavior of Reinforced Concrete Deep Beams with Web Openings (개구부를 갖는 철근콘크리트 깊은 보의 전단거동)

  • 이진섭;김상식
    • Journal of the Korea Concrete Institute
    • /
    • v.13 no.6
    • /
    • pp.619-628
    • /
    • 2001
  • In building construction, openings of the story-height deep beams are usually required for accessibility and service lines such as air conditioning ducts, drain pipes and electric units. It is known that the main parameters affecting the load bearing capacity of deep beams with web openings are size, shape, location and reinforcements of openings. However, there have been no pertinent theories and national design codes for predicting ultimate shear strength of reinforced concrete deep beams with web openings. In this study, the shear behavior of simply supported reinforced concrete deep beams with web openings subject to concentrated loads has been scrutinized experimentally. A total of 34 specimens, the geometry of openings, its reinforcements and shear span to depth ratio, being taken as the experimental variables, has been cast and tested in the laboratory. The effects of these structural parameters on the shear strength and crack initiation and propagation have been carefully checked and analyzed. From the tests, it has been observed that the failures of all specimens were due to shear mechanism and the ultimate strength of specimens varies according to the location of openings, by which the formation of compression struts between the loading points and supports are deterred. All of the test results of specimens have been compared with the formulas proposed by previous researchers. The results were closely coincident with the formulas given by Ray and Kong's equation except for some X series specimens having a larger dimension of openings beyond the geometric limits of proposed equations.

Detailed Deterioration Evaluation and Analysis of Conservation Environment for the Seosanmaaesamjonbulsang (Rock-carved Triad Buddha in Seosan), Korea (서산마애삼존불상의 정밀 손상도 평가와 보존환경 분석)

  • Lee, Sun-Myung;Lee, Chan-Hee;Kim, Ji-Young
    • Journal of Conservation Science
    • /
    • v.26 no.3
    • /
    • pp.277-294
    • /
    • 2010
  • The Seosanmaaesamjonbulsang (National Treasure No. 84) consists of light gray and coarse to mediumgrained biotite granite with partly developed pegmatite and quartz vein. The host rock is divided into dozens of rock blocks with various shape along irregular discontinuity plane. The evaluation results of discontinuity systems reveal that the host rock were exposed to instable sloping environments. Results of deterioration diagnosis show that the degree of damage has been made worse by physical weathering and surface discoloration laying stress on part that vertical and horizontal joints are massed. Generally, deterioration rate of the triad Buddha surface cover with 42.7%, however, the rate of physical weathering and surface discoloration are subdivided to 9.6% and 33.1%, respectively. Ultrasonic measurements indicate that the triad Buddha was reached highly weathered grade in general. And the rock material was weaken to show low velocity zone of 1,000m/s along irregular joint systems. Indoor and outdoor mean relative humidity of the shelter was recorded more than 70% during every season, and high frequency appears in high relative humidity range over 95%. Such environments seem to have produced dew condensation on the rock surface with rainfall and supply water, promoted physical, chemical and biological weathering along crack and joint, resulting in high permeation of water and percentage of water content. Therefore, it is judged that for scientific conservation of the triad Buddha it needs environment control through persistent preservation environment monitoring including water problem.

Probabilistic fatigue assessment of rib-to-deck joints using thickened edge U-ribs

  • Heng, Junlin;Zheng, Kaifeng;Kaewunruen, Sakdirat;Zhu, Jin;Baniotopoulos, Charalampos
    • Steel and Composite Structures
    • /
    • v.35 no.6
    • /
    • pp.799-813
    • /
    • 2020
  • Fatigue cracks of rib-to-deck (RD) joints have been frequently observed in the orthotropic steel decks (OSD) using conventional U-ribs (CU). Thickened edge U-rib (TEU) is proposed to enhance the fatigue strength of RD joints, and its effectiveness has been proved through fatigue tests. In-depth full-scale tests are further carried out to investigate both the fatigue strength and fractography of RD joints. Based on the test result, the mean fatigue strength of TEU specimens is 21% and 17% higher than that of CU specimens in terms of nominal and hot spot stress, respectively. Meanwhile, the development of fatigue cracks has been measured using the strain gauges installed along the welded joint. It is found that such the crack remains almost in semi-elliptical shape during the initiation and propagation. For the further application of TEUs, the design curve under the specific survival rate is required for the RD joints using TEUs. Since the fatigue strength of welded joints is highly scattered, the design curves derived by using the limited test data only are not reliable enough to be used as the reference. On this ground, an experiment-numerical hybrid approach is employed. Basing on the fatigue test, a probabilistic assessment model has been established to predict the fatigue strength of RD joints. In the model, the randomness in material properties, initial flaws and local geometries has been taken into consideration. The multiple-site initiation and coalescence of fatigue cracks are also considered to improve the accuracy. Validation of the model has been rigorously conducted using the test data. By extending the validated model, large-scale databases of fatigue life could be generated in a short period. Through the regression analysis on the generated database, design curves of the RD joint have been derived under the 95% survival rate. As the result, FAT 85 and FAT 110 curves with the power index m of 2.89 are recommended in the fatigue evaluation on the RD joint using TEUs in terms of nominal stress and hot spot stress respectively. Meanwhile, FAT 70 and FAT 90 curves with m of 2.92 are suggested in the evaluation on the RD joint using CUs in terms of nominal stress and hot spot stress, respectively.

Flexural Behavior of RC Beams Strengthened with Steel Strand and Carbon Fiber Sheet (강연선 및 탄소섬유쉬트로 보강된 철근 콘크리트 보의 휨거동 특성)

  • 양동석;박선규;이용학
    • Journal of the Korea Concrete Institute
    • /
    • v.14 no.2
    • /
    • pp.216-222
    • /
    • 2002
  • With deterioration of the nation's infrastructure comes the growing, need for effective means of rehabilitating structures. Possibly one for the most challenging tasks is to upgrade the overall capacity of concrete structure. Therefore, considerable efforts are still being made to develop new construction materials. Rehabilitation of damaged RC structures occasionally requires the removal and replacement of concrete in the tension zone of the structural members. Typical situation where the tension zone repair is necessary is when the concrete in the tension zone in beams or slabs has spalled off as a result of corrosion in the bottom reinforcing bars or due to extensive fire. The rehabilitation of such conditions normally involves the removal of the concrete beyond the reinforcement bars, cleaning or replacing the tensile bars and reinstatement of concrete to cover the steel bars the original shape and size. This study focused on the flexural behavior of reinforced concrete beams strengthened by steel strand and carbon fiber sheet in the tension zone. The properties of beams are 15$\times$25 cm rectangular and over a 200cm span. Test parameters in this experimental study were strengthening methods, jacking volume, the number of sheet. We investigated the flexural behavior of simply supported RC beams which are strengthened with the carbon fiber sheet, monotonic loads. Attention is concentrated upon overall bending capacity, deflection, ductility index, failure mode and crack development of repaired and rehabilitated beams.

Application of Headed Bars with Small Head in Exterior Beam-Column Joints Subjected to Reversed Cyclic Loads (반복하중을 받는 외부 보-기둥 접합부에서 작은 헤드를 사용한 Headed Bar적용)

  • Ha, Sang-Su;Choi, Dong-Uk;Lee, Chang-Ho
    • Journal of the Korea Concrete Institute
    • /
    • v.19 no.4
    • /
    • pp.411-420
    • /
    • 2007
  • The applicability of headed bars in exterior beam-column joints under reversed cyclic loading was investigated. A total of ten pullout tests were first performed to examine pullout behavior of headed bars subjected to monotonic and cyclic loading with test variables such as connection type between head and bar stem (weld or no weld), loading methods (monotonic or cyclic loading), and head shape (small or large circular head and square head). Two full-scale beam-column joint tests were then performed to compare the structural behavior of exterior beam-column joints constructed using two different reinforcement details: i.e. $90^{\circ}$ standard hooks and headed bars. Both joints were designed following the recommendations of ACI-ASCE Committee 352 for Type 2 performance: i.e. the connection is required to dissipate energy through reversals of deformation into inelastic range. The pullout test results revealed that welded head to the stem did not necessarily result in increased pullout strength when compared to non-welded head. Relatively large circular head resulted in higher peak load than smaller circular and square head. Both beam-column joints with conventional $90^{\circ}$ hooks and headed bars behaved similarly in terms of crack development, hysteresis curves, and peak strengths. The joint using the headed bars showed better overall structural performance in terms of ductility, deformation capacity, and energy dissipation. These experimental results demonstrate that the headed bars using relatively small head can be properly designed far use in external beam-column joint.

Manufacturing and Mechanical Properties of Epoxy Fibers Spinning using Anhydride and Amine Hardeners (산 무수물계 및 아민계 경화제를 이용한 열경화성 에폭시 섬유 제조 및 물성)

  • Shin, Pyeong-Su;Kim, Jong-Hyun;Park, Ha-Seung;Baek, Yeong-Min;Kwon, Dong-Jun;Park, Joung-Man
    • Composites Research
    • /
    • v.29 no.6
    • /
    • pp.408-413
    • /
    • 2016
  • Commonly-used polymers are manufactured as versatile forms. Furthermore, continuous polymer fibers are recently manufactured using nylon or aramid fiber. One of common epoxy was also used to make polymer fibers. Bisphenol-A type was used as base epoxy whereas amine and anhydride were used as hardeners. Epoxy fibers was cured by stepping up the temperature to maintain the shape of epoxy fiber. Surface energy was measured to confirm the degree of interfacial adhesion by modified static contact angle method. After mechanical properties were measured via fiber tensile test, the evaluation of fiber fracture was proceeded. Tensile strength of epoxy fiber using amine type hardener was higher as 138 MPa than anhydride case as 70 MPa. Fractured surface exhibited different failure patterns at the cross-section.

Characterization of GaN epitaxial layer grown on nano-patterned Si(111) substrate using Pt metal-mask (Pt 금속마스크를 이용하여 제작한 나노패턴 Si(111) 기판위에 성장한 GaN 박막 특성)

  • Kim, Jong-Ock;Lim, Kee-Young
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.21 no.3
    • /
    • pp.67-71
    • /
    • 2014
  • An attempt to grow high quality GaN on silicon substrate using metal organic chemical vapor deposition (MOCVD), herein GaN epitaxial layers were grown on various Si(111) substrates. Thin Platinum layer was deposited on Si(111) substrate using sputtering, followed by thermal annealing to form Pt nano-clusters which act as masking layer during dry-etched with inductively coupled plasma-reactive ion etching to generate nano-patterned Si(111) substrate. In addition, micro-patterned Si(111) substrate with circle shape was also fabricated by using conventional photo-lithography technique. GaN epitaxial layers were subsequently grown on micro-, nano-patterned and conventional Si (111) substrate under identical growth conditions for comparison. The GaN layer grown on nano-patterned Si (111) substrate shows the lowest crack density with mirror-like surface morphology. The FWHM values of XRD rocking curve measured from symmetry (002) and asymmetry (102) planes are 576 arcsec and 828 arcsec, respectively. To corroborate an enhancement of the growth quality, the FWHM value achieved from the photoluminescence spectra also shows the lowest value (46.5 meV) as compare to other grown samples.