• Title/Summary/Keyword: crack ratio

Search Result 1,306, Processing Time 0.035 seconds

A Study on Fatigue Crack Growth Behavior of Steel Using AE (AE을 이용한 강의 피로균열전파 거동에 관한 연구)

  • Chung, K.Y.;Kim, S.J.;Kim, Y.S.;Oh, M.S.;Kim, Y.D.
    • Journal of Power System Engineering
    • /
    • v.5 no.2
    • /
    • pp.50-56
    • /
    • 2001
  • In this study, the effect of specimen thickness and stress ratio on fatigue crack growth in S45C steel was investigated. Acoustic emission was monitored during the fatigue crack growth test. Both crack closure and AE technique were used in assessing fatigue crack growth behavior. Constant amplitude loading tests were performed on CT type specimen with three different thicknesses and stress ratios. Crack closure was investigated to explain the influence of specimen thickness and stress ratio on the fatigue crack growth in the second growth region. The crack closure effect was decreased with specimen thickness and stress ratio.

  • PDF

Numerical Investigation of the Effect of Crack Shape on Leak Flow Characteristics in Pipelines (누설 모양에 따른 파이프 누수 특성에 대한 수치 해석 연구)

  • Lee, Hyunmin;Kim, Jungwoo
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.26 no.2
    • /
    • pp.238-242
    • /
    • 2017
  • The effect of crack shape on the leak flow characteristics in pipelinesis investigated using computational fluid dynamics (CFD) simulations. In the present study, two different crack shapes are considered: axial crack andcircumferential crack. The present simulation results showed that under the same crack area, the aspect ratio influences the leak rate. When the aspect ratio is1, the leak rate reaches the minimum value. Moreover, the leak rate in the circumferentialcrack is slightly larger than that in the axial crack. The change in the leak rateaccording to the crack shape could be explained by the different velocitydistributions at the leak position depending on the aspect ratio.

Calculation of the Crack Length for a Pipe Specimen using the Modified Load Ratio Method (수정된 하중비법을 이용한 배관 시험편의 균열 길이 계산)

  • Choi, Jung-Hun;Huh, Yong;Koo, Jae-Mean;Seok, Chang-Sung;Park, Jae-Sil
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.33 no.12
    • /
    • pp.1375-1382
    • /
    • 2009
  • The objective of this paper is to apply the load ratio method to the measurement of the crack length of the real scale pipe specimen. The load ratio method was modified and finite element analyses were performed to derive the relationship between the normalized compliance and the normalized crack length for the pipe specimen. In order to measure the crack length, the direct current potential drop method and the modified load ratio method were applied to the pipe test. The applicability of the modified load ratio method was confirmed by comparing the calculated crack length with the measured crack length from the pipe experiment.

A Model Estimating the Ratigue Crack Growth in Aluminum Alloy A5083-O Considering the Effect of Stress ratio (응력비의 영향을 고려한 알루미늄합금 A5083-O의 피로균열전파 특성 예측모델)

  • 조상명;김종호;김영식
    • Journal of Welding and Joining
    • /
    • v.12 no.3
    • /
    • pp.82-89
    • /
    • 1994
  • In this paper the effect of stress ratio on the fatigue crack growth rate of aluminum alloy A5083-O was examined. The fatigue tests were carried out using CCT (center cracked tension) specimens and CT(compact tension) specimens which were subjected to 0.5 and -1.0 stress ratio respectively. The obtained results are as follows; 1) The $\DeltaK_{th}$ as the function of stress ratio R was introduced in evaluating the fatigue crack growth rate of A5083-O. 2) A new model evaluating the effect of stress ratio on the fatigue crack growth rate was developed over the region of low and high propagation rate.

  • PDF

Characteristics of Crack Spacing and Crack Width of Continuously Reinforced Concrete Pavement Based on Long-Term Field Surveys (장기간 현장조사를 통한 연속철근 콘크리트 포장의 균열간격과 균열폭 특성 분석)

  • Oh, Han Jin;Cho, Young Kyo;Kim, Seong-Min
    • International Journal of Highway Engineering
    • /
    • v.18 no.3
    • /
    • pp.75-86
    • /
    • 2016
  • PURPOSES : The purpose of this study is to investigate characteristics of crack spacing and crack width and their relationship in continuously reinforced concrete pavement (CRCP) based on the data obtained from long-term field observations. METHODS : The crack spacings and crack widths are measured periodically over 10 years at two different CRCP sections: one with asphalt bond breaker beneath concrete slab, and the other with bonded lean concrete base beneath concrete slab. The effects of steel ratio, type of underlying layer, terminal treatment method, and seasonal temperature change on the crack characteristics are evaluated by analyzing the measured data. RESULTS : The CRCP with lean concrete base shows smaller crack spacings than those of the CRCP with asphalt bond breaker. As the steel ratio increases, both the crack spacing and crack width tend to decrease. The crack width becomes larger as the crack age increases, but once the crack age is over a certain value the crack width tends to converge. When the terminal anchor lug system is not used and the expansion joints are employed at the terminals, the crack spacings and crack widths increase near the terminal sections. The crack spacing and crack width seem to be proportional each other, but not necessarily linearly, and their relationship is more distinguished in the summer when the crack widths become smaller. CONCLUSIONS : The steel ratio, underlying layer type, terminal treatment method, and seasonal temperature change affect the characteristics of cracks and the crack spacing and crack width are related to each other.

Influence of stress ratio and microstructural size on fatigue crack growth and crack closure in near-threshold (複合組織鋼의 疲勞균열진전거동과 균열닫힘조건에 미치는 應力比 및 微視組織크기의 영향)

  • 김정규;황돈영
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.12 no.6
    • /
    • pp.1343-1349
    • /
    • 1988
  • In this study, it is investigated for the effects of stress ratio and grain size on fatigue crack growth behavior and crack closure, in ferrite-martensite dual phase steels. The results obtained are as follows ; .DELTA. $K_{th}$ is independent of the ferrite grain size, but decreases with increasing stress ratio. The relation between .DELTA. $K_{th}$ and stress ratio R is as follows : .DELTA. $K_{th}$ =15.1(1-0.95R). But (.DELTA. $K_{eff}$)$_{th}$ in terms of crack closure is approximately 2.5 MPa.root.m. Also, variation of the degree of crack deflection to crack tip opening displacement at the minimum load is considered as a parameter of crack closure.e.e.

Combined Mode I / III Stress Intensity Factor Analysis of a Crack in a Variable Thickness Plate (두께가 변화하는 부재 내의 혼합모드 I / III 균열의 응력확대 계수해석 - 3차원 유한요소해석 중심으로 -)

  • 양원호;최용식;조명래
    • Journal of the korean Society of Automotive Engineers
    • /
    • v.15 no.2
    • /
    • pp.112-120
    • /
    • 1993
  • Variable thickness plates are commonly encountered in the majority of mechanical/structural components of industrial applications. And, as a result of the unsymmetry of the structure or the load and the anisoptropy of the materials, the cracks in engineering structures are generally subjected to combined stresses. In spite of considerable practical interest, however, a few fracture mechanics study on combined mode crack in a variable thickness plate have carried out. In this respect, combined mode 1/3 stress intensity factors $K_{1}$ and $K_{3}$ at the crack tip for a variable thickness plate were obtained by 3-dimensional finite element analysis. Variable thickness plates containing a central slant crack were chosen. the parameters used in this study were dimensionless crack length .lambda. crack slant angle .alpha, thickness ratio .betha. and width ratio .omega. Stress intensity factors were calculated by crack opening displacement(COD) and crack tearing displacement(CTD) method proposed by Ingraffea and Manu. The effect of thickness ratio .betha. on $K_{1}$ is relatively great in comparison to $K_{3}$.

  • PDF

The Mixed Mode fatigue Crack Propagation Behavior with the Variation of Stress Ratio (응력비 변화에 따른 혼합모드 피로균열 전파거동)

  • Song, Sam-Hong;Choi, Ji-Hoon;Lee, Jeong-Moo
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.26 no.11
    • /
    • pp.2287-2296
    • /
    • 2002
  • Most cracks in the structure occur under mixed mode loading and those fatigue crack propagation behavior heavily depends on the stress ratio. So, it is necessary to study the fatigue behavior under mixed mode loading as the stress ratio changes. In this paper, the fatigue crack propagation behavior was respectively investigated at stress ratio 0.1, 0.3, 0.5, 0.7 and we changed the loading application angle into 0$^{\circ}$, 30$^{\circ}$, 60$^{\circ}$ to apply various loading mode. The mode I and II stress intensity factor of CTS specimen used in this study was calculated by the displacement extrapolation method using FEM (ABAQUS). Using both the experiment and FEM analysis, we have concluded the relationship between crack propagation rate and stress intensity factor range at each loading mode due to the variation of stress ratio. Also, when the crack propagated under given stress ratio and loading mode condition, we have concluded the dominant factors of the crack propagation rate at each case.

Propagation Characteristics of Fatigue Microcracks on Smooth Specimen of $2_{1/4}$ Cr-1 Mo Steel ($2_{1/4}$ Cr-1 Mo강의 평활재상의 미소한 표면피로균열의 성장특성)

  • Suh, Chang-Min;Woo, Byung-Chul;Jang, Hui-Rak
    • Journal of Ocean Engineering and Technology
    • /
    • v.4 no.2
    • /
    • pp.100-111
    • /
    • 1990
  • In this paper, fatigue tests were carried out at stress test levels of 461 MPa, 441 MPa, and 431 MPa by using smooth specimen of$2_{1/4}$ Cr-1 Mo steel with the stress ratio(R) of 0.05. The initiation, growth and coalescense process of the major cracks and sub-cracks among the fatigue cracks on the smooth specimen are investigated and measured under each stress level at a constant cycle ratio by the replica technique with optical microscope. Some of the important results are as follows: In spite of the difference of stress levels, the major crack data gather into a small band in the curve of surface crack length and crack depth against cycle ratio N/Nf. The sub-crack data, however, deviate from the band of the major crack. The growth rates, da/dN, of major and sub-crack plotted against the stress intensity factor range, ${\Delta}K$, have the tendency to be compressed on a relatively small band. But it is more effective to predict fatigue life through major cracks. The propagation behavior of surface microcracks on the smooth specimens coincides with that of the specimen having an artificial small surface defect or through crack.

  • PDF

Fatigue Crack Propagation Characteristics in HAZ of A106 Gr B Steel Pipe Weldments (A106 Gr B강 배관용접부의 잔류응력해석 및 피로균열성장특성)

  • 김철한;배동호;김복기;조선영;홍정균;이범노
    • Proceedings of the KWS Conference
    • /
    • 1999.05a
    • /
    • pp.237-240
    • /
    • 1999
  • In this study, residual stresses of the weldment were calculated by finite element analysis(FEA) and experiment. And, the crack closure behaviour and fatigue crack growth characteristics in field of residual stress of A106 Gr B steel pipe weldment were investigated under various stress ratio. Obtained results are as follows. I) $K_{op}$ was independent of $K_{max}$, and load ratio in fatigue crack growth. 2) In variation of load ratio, the scatter band of crack growth curve was reduced by half considering crack closure. and 3) Neglecting crack closure behaviour, actual fatigue crack growth rate can be underestimated' and Actual fatigue crack growth rate can be overestimated by $K_{res}$, in tensile residual stress field.

  • PDF