Browse > Article
http://dx.doi.org/10.7735/ksmte.2017.26.2.238

Numerical Investigation of the Effect of Crack Shape on Leak Flow Characteristics in Pipelines  

Lee, Hyunmin (Department of Mechanical System Design Engineering, Seoul National Univeristy of Science and Technology)
Kim, Jungwoo (Department of Mechanical System Design Engineering, Seoul National Univeristy of Science and Technology)
Publication Information
Journal of the Korean Society of Manufacturing Technology Engineers / v.26, no.2, 2017 , pp. 238-242 More about this Journal
Abstract
The effect of crack shape on the leak flow characteristics in pipelinesis investigated using computational fluid dynamics (CFD) simulations. In the present study, two different crack shapes are considered: axial crack andcircumferential crack. The present simulation results showed that under the same crack area, the aspect ratio influences the leak rate. When the aspect ratio is1, the leak rate reaches the minimum value. Moreover, the leak rate in the circumferentialcrack is slightly larger than that in the axial crack. The change in the leak rateaccording to the crack shape could be explained by the different velocitydistributions at the leak position depending on the aspect ratio.
Keywords
CFD; Pipe; Leak; Crack shape; Aspect ratio;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Li, X., Shi, L., Zhang, Z., Li, X., 2010, Leak Rate Calculation for LBB Analysis in High Temperature Gas-Cooled Reactors, Nucl. Eng. Des., 240 3231-3237.   DOI
2 Wang, M., Qiu, S., Su, G., Tian, W., 2014, Research on the Leak Rate Characteristics of Leak-Before-Break (LBB) in Pressurized Water Reactor (PWR), Appl. Thermal Eng., 62 133-140.   DOI
3 Yano, T., Matsuhima, E., Okamoto, A., 1988, Leak Flow Rate from a Through-Wall Crack in a Pipe, Int. J. of JSME, 31 494-504.
4 Narabayashi, T., Fujii, M., Matsumoto, K., Nakamura, S., Tanaka, Y., Horimizu, Y., 1991, Experimental Study on Leak Flow Model through Fatigue Crack in Pipe, Nucl. Eng. Des., 128 17-27.   DOI
5 Ferrante, M., Brunone, B., Meniconi, S., Capponi, C., Massari, C.. 2014, The leak Law: from Local to Global Scale Proc. Eng., 70 651-659.   DOI
6 Fox, S., Collins, R., Boxall, J.. 2015, Traditional Leakage Models for Leakage Modelling: Effective or Not?, Proc. Eng., 119 35-42.   DOI
7 Matsumoto, K., Nakamura, S., Gotoh, N., 1991, Study on Crack Opening Area and Coolant Leak Rates in Pipe Cracks, Int. J. Pres. Ves. & Piping, 46 35-50.   DOI
8 Ben-Mansour, R., Habib, M. A., Khalifa, A., Youcef-Toumi, K., Chatzigeorgiou, D., 2012, Computational Fluid Dynamic Simulation of Small Leaks in Water Pipelines for Direct Leak Pressure Transduction, Comput. Fluids, 57 110-123.   DOI
9 Shehadeh, M., Shahata, A. I., 2013, Modeling the Effect of Incompressible Leakage Patterns on Rupture Area in Pipeline, CFD Letters, 5 132-142.
10 Liu, C., Li, Y., Meng, L., Wang, W., Zhao, F., Fu, J., 2015, Computational Fluid dynamic Simulation of Pressure Perturbations Generation for Gas Pipelines Leakage, Comput. Fluids, 119 213-223.   DOI
11 Bariha, N., Mishra, I. M., Srivastava, V. C., 2016, Hazard Analysis of Failure of Natural Gas and Petroleum Gas Pipelines, J. Loss Pre. Proc. Indu., 40 217-226.   DOI
12 Olsen, J. E., Skjetne, P., 2016, Current Understanding of Subsea Gas Release: a Review, The Canad. J. Chem. Eng., 94 209-219.   DOI
13 Beck, S. B. M., Bagshaw, N. M., Yates, J. R., 2005, Explicit Equations for Leak Rates through Narrow Cracks, Int. J. Pre. Ves. & Piping, 82 565-570.   DOI
14 Xing, D., Yan, C., Wang, C., Sun, L., 2013, A Theoretical Analysis about the Effect of Aspect Ratio on Single-Phase Laminar Flow in Rectangular Ducts, Prog. Nucl. Eng., 65 1-7.   DOI
15 Revankar, S. T., Riznic, J. R., 2009, Assessment of Steam Generator Tube Flaw Size and Leak Rate Models Nucl. Tech., 167 157-168.   DOI
16 Nasir, M. T., Mysorewala, M., Cheded, L., Siddiqui, B., Sabih, M., 2014, Measurement Error Sensitivity Analysis for Decting and Locating Leak in Pipeline using ANN and SVM, 11th Int. Multi-Conference on Systems, Signals & Devices, SSD14-1569847013.
17 Wolf, B., Revankar, T., Riznic, J., 2012, Experiments on Choking Flow of Subcooled Liquid through a Simulated Steam Generator Tube Crack, ICONE20-POWER2014-54080, 41-50.
18 Kim, Y. S., Kwon, T.-S., Bae, S.-W., Euh, D.-J., Park, H.-S., Cho, S., Yi, S.-J., Kang, K.-H., Choi, K.-Y., 2016, Comparison of Critical Flow Models for SBLOCA Tests of the ATLAS Facility, Ann. Nucl. Eng., 87 435-442.   DOI
19 Lee, P. J., Vitkovsky, J. P., Lambert, M. F., Simpson, A. R., Liggett, J. A., 2005, Leak Location using the Pattern of the Frequency Response in Pipeliens: a Numerical Study, J. Sound Vib., 284 1051-1073.   DOI
20 Grebner, H., 1995, Results of a Benchmark Test on the Crack Opening and Leak Rate Calculation, Int. J. Pres. Ves. Piping, 61 35-39.   DOI
21 Hong, C., Asako, Y., Lee, J.-H., 2009, Estimation of Leak Flow Rates through Narrow Cracks, J. Pres. Ves. Tech., 131 051405.   DOI