DOI QR코드

DOI QR Code

Numerical Investigation of the Effect of Crack Shape on Leak Flow Characteristics in Pipelines

누설 모양에 따른 파이프 누수 특성에 대한 수치 해석 연구

  • Lee, Hyunmin (Department of Mechanical System Design Engineering, Seoul National Univeristy of Science and Technology) ;
  • Kim, Jungwoo (Department of Mechanical System Design Engineering, Seoul National Univeristy of Science and Technology)
  • Received : 2017.03.29
  • Accepted : 2017.04.14
  • Published : 2017.04.15

Abstract

The effect of crack shape on the leak flow characteristics in pipelinesis investigated using computational fluid dynamics (CFD) simulations. In the present study, two different crack shapes are considered: axial crack andcircumferential crack. The present simulation results showed that under the same crack area, the aspect ratio influences the leak rate. When the aspect ratio is1, the leak rate reaches the minimum value. Moreover, the leak rate in the circumferentialcrack is slightly larger than that in the axial crack. The change in the leak rateaccording to the crack shape could be explained by the different velocitydistributions at the leak position depending on the aspect ratio.

Keywords

References

  1. Grebner, H., 1995, Results of a Benchmark Test on the Crack Opening and Leak Rate Calculation, Int. J. Pres. Ves. Piping, 61 35-39. https://doi.org/10.1016/0308-0161(94)P3697-K
  2. Nasir, M. T., Mysorewala, M., Cheded, L., Siddiqui, B., Sabih, M., 2014, Measurement Error Sensitivity Analysis for Decting and Locating Leak in Pipeline using ANN and SVM, 11th Int. Multi-Conference on Systems, Signals & Devices, SSD14-1569847013.
  3. Hong, C., Asako, Y., Lee, J.-H., 2009, Estimation of Leak Flow Rates through Narrow Cracks, J. Pres. Ves. Tech., 131 051405. https://doi.org/10.1115/1.3147984
  4. Li, X., Shi, L., Zhang, Z., Li, X., 2010, Leak Rate Calculation for LBB Analysis in High Temperature Gas-Cooled Reactors, Nucl. Eng. Des., 240 3231-3237. https://doi.org/10.1016/j.nucengdes.2010.06.003
  5. Wang, M., Qiu, S., Su, G., Tian, W., 2014, Research on the Leak Rate Characteristics of Leak-Before-Break (LBB) in Pressurized Water Reactor (PWR), Appl. Thermal Eng., 62 133-140. https://doi.org/10.1016/j.applthermaleng.2013.08.046
  6. Yano, T., Matsuhima, E., Okamoto, A., 1988, Leak Flow Rate from a Through-Wall Crack in a Pipe, Int. J. of JSME, 31 494-504.
  7. Narabayashi, T., Fujii, M., Matsumoto, K., Nakamura, S., Tanaka, Y., Horimizu, Y., 1991, Experimental Study on Leak Flow Model through Fatigue Crack in Pipe, Nucl. Eng. Des., 128 17-27. https://doi.org/10.1016/0029-5493(91)90245-D
  8. Ferrante, M., Brunone, B., Meniconi, S., Capponi, C., Massari, C.. 2014, The leak Law: from Local to Global Scale Proc. Eng., 70 651-659. https://doi.org/10.1016/j.proeng.2014.02.071
  9. Fox, S., Collins, R., Boxall, J.. 2015, Traditional Leakage Models for Leakage Modelling: Effective or Not?, Proc. Eng., 119 35-42. https://doi.org/10.1016/j.proeng.2015.08.850
  10. Matsumoto, K., Nakamura, S., Gotoh, N., 1991, Study on Crack Opening Area and Coolant Leak Rates in Pipe Cracks, Int. J. Pres. Ves. & Piping, 46 35-50. https://doi.org/10.1016/0308-0161(91)90067-C
  11. Ben-Mansour, R., Habib, M. A., Khalifa, A., Youcef-Toumi, K., Chatzigeorgiou, D., 2012, Computational Fluid Dynamic Simulation of Small Leaks in Water Pipelines for Direct Leak Pressure Transduction, Comput. Fluids, 57 110-123. https://doi.org/10.1016/j.compfluid.2011.12.016
  12. Shehadeh, M., Shahata, A. I., 2013, Modeling the Effect of Incompressible Leakage Patterns on Rupture Area in Pipeline, CFD Letters, 5 132-142.
  13. Liu, C., Li, Y., Meng, L., Wang, W., Zhao, F., Fu, J., 2015, Computational Fluid dynamic Simulation of Pressure Perturbations Generation for Gas Pipelines Leakage, Comput. Fluids, 119 213-223. https://doi.org/10.1016/j.compfluid.2015.06.023
  14. Bariha, N., Mishra, I. M., Srivastava, V. C., 2016, Hazard Analysis of Failure of Natural Gas and Petroleum Gas Pipelines, J. Loss Pre. Proc. Indu., 40 217-226. https://doi.org/10.1016/j.jlp.2015.12.025
  15. Olsen, J. E., Skjetne, P., 2016, Current Understanding of Subsea Gas Release: a Review, The Canad. J. Chem. Eng., 94 209-219. https://doi.org/10.1002/cjce.22345
  16. Beck, S. B. M., Bagshaw, N. M., Yates, J. R., 2005, Explicit Equations for Leak Rates through Narrow Cracks, Int. J. Pre. Ves. & Piping, 82 565-570. https://doi.org/10.1016/j.ijpvp.2004.12.005
  17. Xing, D., Yan, C., Wang, C., Sun, L., 2013, A Theoretical Analysis about the Effect of Aspect Ratio on Single-Phase Laminar Flow in Rectangular Ducts, Prog. Nucl. Eng., 65 1-7. https://doi.org/10.1016/j.pnucene.2013.01.003
  18. Revankar, S. T., Riznic, J. R., 2009, Assessment of Steam Generator Tube Flaw Size and Leak Rate Models Nucl. Tech., 167 157-168. https://doi.org/10.13182/NT09-A8859
  19. Wolf, B., Revankar, T., Riznic, J., 2012, Experiments on Choking Flow of Subcooled Liquid through a Simulated Steam Generator Tube Crack, ICONE20-POWER2014-54080, 41-50.
  20. Kim, Y. S., Kwon, T.-S., Bae, S.-W., Euh, D.-J., Park, H.-S., Cho, S., Yi, S.-J., Kang, K.-H., Choi, K.-Y., 2016, Comparison of Critical Flow Models for SBLOCA Tests of the ATLAS Facility, Ann. Nucl. Eng., 87 435-442. https://doi.org/10.1016/j.anucene.2015.10.001
  21. Lee, P. J., Vitkovsky, J. P., Lambert, M. F., Simpson, A. R., Liggett, J. A., 2005, Leak Location using the Pattern of the Frequency Response in Pipeliens: a Numerical Study, J. Sound Vib., 284 1051-1073. https://doi.org/10.1016/j.jsv.2004.07.023

Cited by

  1. Flow and Fatigue Analysis of a Water Pipe vol.28, pp.6, 2019, https://doi.org/10.7735/ksmte.2019.28.6.400