• 제목/요약/키워드: crack prediction

검색결과 552건 처리시간 0.033초

항공기 구조물의 체결용 HOLE을 COLD WORKING 할때 생성되는 잔류응력의 영향연구 (A Study on Effects of the Residual Stresses Around Cold Working Hole of the Aircraft Structure)

  • 강수준;최청호
    • 한국군사과학기술학회지
    • /
    • 제2권1호
    • /
    • pp.101-109
    • /
    • 1999
  • 본 논문은 항공기 구조물의 체결용 홀(hole)을 냉간가공(cold working)할때 홀주변에 생성되는 잔류응력이 균열발생 수명과 균열성장에 미치는 영향을 연구한 내용이다. 항공기용 재료로 많이 사용되는 AL7075-T6 및 AL2024-T3 시편으로 측정된 계수를 Morrow의 수명예측식에 적용하여 수정된 냉간가공(cold working)에 관한 수명예측식을 제안하였다. 수정된 계산식으로 얻어진 수명예측값과 실험에 의하여 이미 알려진 값이 비교적 일치함을 보여 이러한 재료에 대하여 수명예측이 가능함을 보였다. 균열성장 예측을 위해 역시 AL7075-T6 재료에 대하여 가중함수(weight function)방법으로 잔류응력 세기계수를 구하여 Forman의 균열성장 예측식을 수정하여 계산 한 결과 이 또한 알려진 실험값과 거의 일치함을 보여 실험에 사용한 재료의 구조물 해석에 유용 할 것으로 보인다. 본 연구는 항공기용 구조물의 홀주변을 냉간가공 (cold working)할 때 생성되는 잔류응력의 영향을 연구하는 기초적인 단계 일 뿐이며, 향후 실제 정비현장에서 적용 할 수 있는 대상분야와 연구 방향에 대한 보다 심층적 연구가 필요함을 보인다.

  • PDF

열화상 이미지와 환경변수를 이용한 콘크리트 균열 깊이 예측 머신 러닝 분석 (Comparison Analysis of Machine Learning for Concrete Crack Depths Prediction Using Thermal Image and Environmental Parameters)

  • 김지형;장아름;박민재;주영규
    • 한국공간구조학회논문집
    • /
    • 제21권2호
    • /
    • pp.99-110
    • /
    • 2021
  • This study presents the estimation of crack depth by analyzing temperatures extracted from thermal images and environmental parameters such as air temperature, air humidity, illumination. The statistics of all acquired features and the correlation coefficient among thermal images and environmental parameters are presented. The concrete crack depths were predicted by four different machine learning models: Multi-Layer Perceptron (MLP), Random Forest (RF), Gradient Boosting (GB), and AdaBoost (AB). The machine learning algorithms are validated by the coefficient of determination, accuracy, and Mean Absolute Percentage Error (MAPE). The AB model had a great performance among the four models due to the non-linearity of features and weak learner aggregation with weights on misclassified data. The maximum depth 11 of the base estimator in the AB model is efficient with high performance with 97.6% of accuracy and 0.07% of MAPE. Feature importances, permutation importance, and partial dependence are analyzed in the AB model. The results show that the marginal effect of air humidity, crack depth, and crack temperature in order is higher than that of the others.

철강구조물 부재의 강도평가 및 피로균열진전거동 (The behaviour of strength and fatigue crack propagation of various steels in steel bridges)

  • 한승호;김정규
    • 대한기계학회논문집A
    • /
    • 제21권10호
    • /
    • pp.1694-1701
    • /
    • 1997
  • The residual safety assessment of steel structures, an important subject in practice, is given to much attention. Life prediction in the planning course of steel structures under fatigue loading is mainly based on fatigue design criteria resulting from S-N curves. But for any reason cracks have to be assumed due to fabrication failures or fatigue loading in service which can lead total fracture of structures. The life prediction can be carried out by means of fracture mechanics using Paris-Erdogan equation($da/dN=C {\cdot}{\Delta}K^m$). The paper presents results from charpy test to interpret transition behaviour of charpy energy($A_V$) in a wide temperature range and from constant-load-amplitude test to measure fatigue crack growth of various steels widely used in steel bridges since beginning of 20 centuries in Europe. In the normal service temperature range of steel bridges, the steel S355M shows higher maximum charpy energy($A_{Vmax}$) and lower transition temperature($T_{AVmax/2}$) than other steels considered. The C and m of Paris-Erdogan equation on the steels appear to be correlated, and to be affected by the R-ratios due to crack closure, especially at a low fatigue crack growth rate. Scanning electron microscopy analysis was carried out to interpret an influence of the crack closure effects on the correlation of C and m.

기계적 체결부 균열의 피로균열성장에 관한 연구 (A Study on the Fatigue Crack Growth of Cracks in Mechanical Joints)

  • 허성필;양원호;정기현
    • 한국자동차공학회논문집
    • /
    • 제10권1호
    • /
    • pp.187-194
    • /
    • 2002
  • It has been reported that cracks in mechanical joints is generally under mixed-mode and there is critical inclined angle at which mode I stress intensity factor becomes maximum. The crack propagates in arbitrary direction and thus the prediction of crack growth path is needed to provide against crack propagation or examine safety. In order to evaluate the fatigue life of cracks in mechanical joints, horizontal crack normal to the applied load and located on minimum cross section is major concern but critical inclined crack must also be considered. In this paper mixed-mode fatigue crack growth test is performed far horizontal crack and critical inclined crack in mechanical joints. Fatigue crack growth path is predicted by maximum tangential stress criterion using stress intensity factor obtained from weight function method, and fatigue crack growth rates of horizontal and inclined crack are compared.

Crack growth analysis and remaining life prediction of dissimilar metal pipe weld joint with circumferential crack under cyclic loading

  • Murthy, A. Ramachandra;Gandhi, P.;Vishnuvardhan, S.;Sudharshan, G.
    • Nuclear Engineering and Technology
    • /
    • 제52권12호
    • /
    • pp.2949-2957
    • /
    • 2020
  • Fatigue crack growth model has been developed for dissimilar metal weld joints of a piping component under cyclic loading, where in the crack is located at the center of the weld in the circumferential direction. The fracture parameter, Stress Intensity Factor (SIF) has been computed by using principle of superposition as KH + KM. KH is evaluated by assuming that, the complete specimen is made of the material containing the notch location. In second stage, the stress field ahead of the crack tip, accounting for the strength mismatch, the applied load and geometry has been characterized to evaluate SIF (KM). For each incremental crack depth, stress field ahead of the crack tip has been quantified by using J-integral (elastic), mismatch ratio, plastic interaction factor and stress parallel to the crack surface. The associated constants for evaluation of KM have been computed by using the quantified stress field with respect to the distance from the crack tip. Net SIF (KH + KM) computed, has been used for the crack growth analysis and remaining life prediction by Paris crack growth model. To validate the model, SIF and remaining life has been predicted for a pipe made up of (i) SA312 Type 304LN austenitic stainless steel and SA508 Gr. 3 Cl. 1. Low alloy carbon steel (ii) welded SA312 Type 304LN austenitic stainless-steel pipe. From the studies, it is observed that the model could predict the remaining life of DMWJ piping components with a maximum difference of 15% compared to experimental observations.

Crack analysis of reinforced concrete members with and without crack queuing algorithm

  • Ng, P.L.;Ma, F.J.;Kwan, A.K.H.
    • Structural Engineering and Mechanics
    • /
    • 제70권1호
    • /
    • pp.43-54
    • /
    • 2019
  • Due to various numerical problems, crack analysis of reinforced concrete members using the finite element method is confronting with substantial difficulties, rendering the prediction of crack patterns and crack widths a formidable task. The root cause is that the conventional analysis methods are not capable of tracking the crack sequence and accounting for the stress relief and re-distribution during cracking. To address this deficiency, the crack queuing algorithm has been proposed. Basically, at each load increment, iterations are carried out and within each iteration step, only the most critical concrete element is allowed to crack and the stress re-distribution is captured in subsequent iteration by re-formulating the cracked concrete element and re-analysing the whole concrete structure. To demonstrate the effectiveness of the crack queuing algorithm, crack analysis of concrete members tested in the literature is performed with and without the crack queuing algorithm incorporated.

고무의 피로 수명 예측을 위한 찢김에너지 수식화 (Estimation of Tearing Energy for Fatigue Life Prediction of Rubber Material)

  • 김호;김헌영
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2004년도 추계학술대회
    • /
    • pp.172-177
    • /
    • 2004
  • Fatigue life prediction is based on fracture mechanics and database which is established from experimental method. Rubber material also uses the same way for fatigue life prediction. But the absence of standardization of rubber material, various way of composition by each rubber company and uncertainty of fracture criterion makes the design of fatigue life by experimental method almost impossible. Tearing energy which has its origin in energy release rate is evaluated as fracture criterion of rubber material and the applicability of fatigue life prediction method are considered. The system of measuring tearing energy using the principal of virtual crack extension method and fatigue life prediction by the minimum number of experiments are proposed.

  • PDF

혼합모드 단일과대하중 하에서 피로균열 전파거동의 예측 (Prediction of Fatigue Crack Propagation Behavior Under Mixed-Mode Single Overload)

  • 이정무;송삼홍
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2004년도 추계학술대회
    • /
    • pp.359-364
    • /
    • 2004
  • In this study, experiments were tried on the mixed-mode I+II single overloading model which changes the loading mode of overload and fatigue load. Aspects of deformation field in front of the crack which is formed by mixed-mode I+II single overloading were experimentally studied. Then the shape and size of mixed-mode plastic zone were approximately calculated. The propagation behavior of fatigue crack was examined under the test conditions combined by changing the loading mode. The behavior of fatigue cracks were greatly affected by shapes of plastic deformation field and applying mode of fatigue load. Accuracy of prediction and evaluation for fatigue life may be improved by considering all aspects of deformation and behavior of fatigue cracks.

  • PDF

표면크랙 예측을 위한 결정립 제어 레오로지 소재 표면의 나노 변형특성에 관한 연구 (A Study on the Nano-Deformation Characteristics of Grain-Size Controlled Rheology Material Surfaces for Surface Crack Prediction)

  • 윤성원;김현일;강충길
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 2004년도 추계학술대회 논문집
    • /
    • pp.355-358
    • /
    • 2004
  • In this study, the deformation characteristics of grain-size controlled rheology materials surfaces were investigated as a part of the research on the surface crack prediction in semi-solid formed automobile components. The microstructure of rheology Al-Si alloys consists of primary and eutectic regions. In eutectic regions the crack initiation begins with initial fracture of the eutectic silicon particles and inside other intermetallic phases. Nano-deformation characteristics in the eutectic and primary region of semi-solid aluminum alloys (356 alloy and 319 alloy) were investigated through the nanoindentation/scratch experiments and the AFM observation.

  • PDF

알루미늄 5083의 피로균열 진전에 따른 수명예측 및 비파괴평가 (Life Prediction of Fatigue Crack Propagation and Nondestructive Evaluation in 5083 Aluminum Alloy)

  • 남기우
    • 한국해양공학회지
    • /
    • 제15권2호
    • /
    • pp.94-98
    • /
    • 2001
  • fatigue life and nondestructive evaluation were examined experimentally using surface crack specimen and compact tension specimen of 5083 aluminium alloy. Acoustic emission signals emanated during failure of aluminum alloys has been the subject of numerous investigations. Possible sources of AE during deformation have been suggested as the dislocations, fracture of brittle particles and debonding of these particles from the alloy matrix. Fatigue life and penetration behavior of long surface crack can be evaluated quantitatively using K values proposed by authors. The influence of stress ratio on the frequency characteristics of AE signals were investigated.

  • PDF