• 제목/요약/키워드: crack network

검색결과 157건 처리시간 0.026초

Scanning Acoustic Tomograph 방식을 이용한 지능형 반도체 평가 알고리즘 (The Intelligence Algorithm of Semiconductor Package Evaluation by using Scanning Acoustic Tomograph)

  • 김재열;김창현;송경석;양동조;장종훈
    • 한국공작기계학회:학술대회논문집
    • /
    • 한국공작기계학회 2005년도 춘계학술대회 논문집
    • /
    • pp.91-96
    • /
    • 2005
  • In this study, researchers developed the estimative algorithm for artificial defects in semiconductor packages and performed it by pattern recognition technology. For this purpose, the estimative algorithm was included that researchers made software with MATLAB. The software consists of some procedures including ultrasonic image acquisition, equalization filtering, Self-Organizing Map and Backpropagation Neural Network. Self-Organizing Map and Backpropagation Neural Network are belong to methods of Neural Networks. And the pattern recognition technology has applied to classify three kinds of detective patterns in semiconductor packages: Crack, Delamination and Normal. According to the results, we were confirmed that estimative algorithm was provided the recognition rates of $75.7\%$ (for Crack) and $83_4\%$ (for Delamination) and $87.2\%$ (for Normal).

  • PDF

합성곱 신경망을 이용한 아스팔트 콘크리트 도로포장 표면균열 검출 (Asphalt Concrete Pavement Surface Crack Detection using Convolutional Neural Network)

  • 최윤수;김종호;조현철;이창준
    • 한국구조물진단유지관리공학회 논문집
    • /
    • 제23권6호
    • /
    • pp.38-44
    • /
    • 2019
  • 본 연구에서는 아스팔트 콘크리트 도로포장의 표면균열 검출을 위해 합성곱 신경망을 이용하였다. 합성곱 신경망의 학습에 사용되는 표면균열 이미지 데이터의 양에 따른 합성곱 신경망의 성능향상 정도를 평가하였다. 사용된 합성곱 신경망의 구조는 5개의 층으로 구성되어있으며, 3×3 크기의 convolution filter와 2×2 크기의 pooling kernel을 사용하였다. 합성곱 신경망의 학습을 위해서 도로노면 조사 장비를 통해 구축된 국내 도로포장 표면균열 이미지를 활용하였다. 표면균열 이미지 데이터를 학습한 합성곱 신경망 모델의 표면균열 검출 정확도, 정밀도, 재현율, 미검출율, 과검출율을 평가하였다. 가장 많은 양의 데이터를 학습한 합성곱 신경망 모델의 표면균열 검출 정확도, 정밀도, 재현율은 96.6% 이상, 미검출율, 과검출율은 3.4% 이하의 성능을 나타내었다.

Crack Detection Method for Tunnel Lining Surfaces using Ternary Classifier

  • Han, Jeong Hoon;Kim, In Soo;Lee, Cheol Hee;Moon, Young Shik
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제14권9호
    • /
    • pp.3797-3822
    • /
    • 2020
  • The inspection of cracks on the surface of tunnel linings is a common method of evaluate the condition of the tunnel. In particular, determining the thickness and shape of a crack is important because it indicates the external forces applied to the tunnel and the current condition of the concrete structure. Recently, several automatic crack detection methods have been proposed to identify cracks using captured tunnel lining images. These methods apply an image-segmentation mechanism with well-annotated datasets. However, generating the ground truths requires many resources, and the small proportion of cracks in the images cause a class-imbalance problem. A weakly annotated dataset is generated to reduce resource consumption and avoid the class-imbalance problem. However, the use of the dataset results in a large number of false positives and requires post-processing for accurate crack detection. To overcome these issues, we propose a crack detection method using a ternary classifier. The proposed method significantly reduces the false positive rate, and the performance (as measured by the F1 score) is improved by 0.33 compared to previous methods. These results demonstrate the effectiveness of the proposed method.

Analytical solutions for crack initiation on floor-strata interface during mining

  • Zhao, Chongbin
    • Geomechanics and Engineering
    • /
    • 제8권2호
    • /
    • pp.237-255
    • /
    • 2015
  • From the related engineering principles, analytical solutions for horizontal crack initiation and propagation on a coal panel floor-underlying strata interface due to coal panel excavation are derived in this paper. Two important concepts, namely the critical panel width of horizontal crack initiation on the panel floor-underlying strata interface and the critical panel width of vertical fracture (crack) initiation in the panel floor, have been presented. The resulting analytical solution indicates that: (1) the first criterion can be used to express the condition under which horizontal plane cracks (on the panel floor-underlying strata interface or in the panel floor because of delamination) due to the mining induced vertical stress will initiate and propagate; (2) the second criterion can be used to express the condition under which vertical plane cracks (in the panel floor) due to the mining induced horizontal stress will initiate and propagate; (3) this orthogonal set of horizontal and vertical plane cracks, once formed, will provide the necessary weak network for the flow of gas to inrush into the panel. Two characteristic equations are given to quantitatively estimate both the critical panel width of vertical fracture initiation in the panel floor and the critical panel width of horizontal crack initiation on the interface between the panel floor and its underlying strata. The significance of this study is to provide not only some theoretical bases for understanding the fundamental mechanism of a longwall floor gas inrush problem but also a benchmark solution for verifying any numerical methods that are used to deal with this kind of gas inrush problem.

균열이 발생한 콘크리트에서의 염화물 이온 확산에 관한 연구 (A Study on Chloride ion Diffusion in Cracked Concrete)

  • 배상운;박상순;변근주;송하원
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 2001년도 봄 학술발표회 논문집
    • /
    • pp.677-682
    • /
    • 2001
  • In this study, a method to evaluate diffusion coefficient of chloride ion in cracked concrete is proposed. For cracked concrete having either anisotropic or isotropic crack network, each crack of saturated concrete is considered as a V shape crack, and an effective diffusion coefficient is expressed with diffusion coefficients of cracked part and noncracked part and a so-called crack spacing factor. A comparison with experimental results shows that the diffusion coefficient for cracked concrete is accurately predicted by the effective diffusion coefficient. Prediction results also show that the cracks in concrete markedly change the diffusion properties and accelerate penetration of drifting species. The method in this paper can be effectively used to consider the effect of cracks on concrete diffusion coefficient of cracked concrete.

  • PDF

랜덤하중하의 피로균열진전 데이터를 이용한 ${\Delta}K_{eff}$ 평가법의 정량적 평가 (A Quantitative Evaluation of ${\Delta}K_{eff}$ Estimation Methods Based on Random Loading Crack Growth Data.)

  • 구자석;송지호;강재윤
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2004년도 추계학술대회
    • /
    • pp.208-213
    • /
    • 2004
  • Methods for estimation of the effective stress intensity factor range (${\Delta}K_{eff}$) are evaluated for narrow and wide band random loading crack growth test data of 2024-T351 aluminum alloy. Three methods of determining $K_{op}$, visual measurement, ASTM offset compliance method, and the neural network method proposed by Kang and Song, and three methods of estimating ${\Delta}K_{eff}$, conventional, the 2/PI0 and 2/PI methods proposed by Donald and Paris, are compared in a quantitative manner by using the results of fatigue crack growth life prediction under random loading. For all $K_{op}$ determination methods discussed, the 2/PI0 and 2/PI methods of estimating ${\Delta}K_{eff}$ provide better results than conventional method for narrow and wide band random loading data.

  • PDF

균열 패턴인식 알고리즘 개발 (Development of an algorithm for crack pattern recognition)

  • 이방연;김윤용;김진근;박석균
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 2004년도 춘계 학술발표회 제16권1호
    • /
    • pp.716-719
    • /
    • 2004
  • This study proposes an algorithm for recognition of crack patterns, which includes horizontal, vertical, diagonal$(-45^{\circ})$, diagonal$(+45^{\circ})$, and random cracks, based on image processing technique and artificial neural network. A MATLAB code was developed for the proposed algorithm, and then numerical tests were performed on thirty-eight crack images to examine validity of the algorithm. Within the limited tests in the present study, the proposed algorithm was revealed as accurately recognizing the crack patterns when compared to those classified by a human expert.

  • PDF

Cracked rotor diagnosis by means of frequency spectrum and artificial neural networks

  • Munoz-Abella, B.;Ruiz-Fuentes, A.;Rubio, P.;Montero, L.;Rubio, L.
    • Smart Structures and Systems
    • /
    • 제25권4호
    • /
    • pp.459-469
    • /
    • 2020
  • The presence of cracks in mechanical components is a very important problem that, if it is not detected on time, can lead to high economic costs and serious personal injuries. This work presents a methodology focused on identifying cracks in unbalanced rotors, which are some of the most frequent mechanical elements in industry. The proposed method is based on Artificial Neural Networks that give a solution to the presented inverse problem. They allow to estimate unknown crack parameters, specifically, the crack depth and the eccentricity angle, depending on the dynamic behavior of the rotor. The necessary data to train the developed Artificial Neural Network have been obtained from the frequency spectrum of the displacements of the well- known cracked Jeffcott rotor model, which takes into account the crack breathing mechanism during a shaft rotation. The proposed method is applicable to any rotating machine and it could contribute to establish adequate maintenance plans.

정확한 균열 데이터를 효율적으로 생성하는 벡터와 두께 기반의 데이터 증강 (A Vector and Thickness-Based Data Augmentation that Efficiently Generates Accurate Crack Data)

  • 윤주영;김종현
    • 한국컴퓨터정보학회:학술대회논문집
    • /
    • 한국컴퓨터정보학회 2023년도 제67차 동계학술대회논문집 31권1호
    • /
    • pp.377-380
    • /
    • 2023
  • 본 논문에서는 합성곱 신경망(Convolutional Neural Networks, CNN)과 탄성왜곡(Elastic Distortion) 기법을 통한 데이터 증강 기법을 활용하여 학습 데이터를 구축하는 프레임워크를 제안한다. 실제 균열 이미지는 정형화된 형태가 없고 복잡한 패턴을 지니고 있어 구하기 어려울 뿐만 아니라, 데이터를 확보할 때 위험한 상황에 노출될 우려가 있다. 이러한 데이터베이스 구축 문제점을 본 논문에서 제안하는 데이터 증강 기법을 통해 비용적, 시간적 측면에서 효율적으로 해결한다. 세부적으로는 DeepCrack의 데이터를 10배 이상 증가하여 실제 균열의 특징을 반영한 메타 데이터를 생성하여 U-net을 학습하였다. 성능을 검증하기 위해 균열 탐지 연구를 진행한 결과, IoU 정확도가 향상되었음을 확인하였다. 데이터를 증강하지 않았을 경우 잘못 예측(FP)된 경우의 비율이 약 25%였으나, 데이터 증강을 통해 3%까지 감소하였음을 확인하였다.

  • PDF

Structural Crack Detection Using Deep Learning: An In-depth Review

  • Safran Khan;Abdullah Jan;Suyoung Seo
    • 대한원격탐사학회지
    • /
    • 제39권4호
    • /
    • pp.371-393
    • /
    • 2023
  • Crack detection in structures plays a vital role in ensuring their safety, durability, and reliability. Traditional crack detection methods sometimes need significant manual inspections, which are laborious, expensive, and prone to error by humans. Deep learning algorithms, which can learn intricate features from large-scale datasets, have emerged as a viable option for automated crack detection recently. This study presents an in-depth review of crack detection methods used till now, like image processing, traditional machine learning, and deep learning methods. Specifically, it will provide a comparative analysis of crack detection methods using deep learning, aiming to provide insights into the advancements, challenges, and future directions in this field. To facilitate comparative analysis, this study surveys publicly available crack detection datasets and benchmarks commonly used in deep learning research. Evaluation metrics employed to check the performance of different models are discussed, with emphasis on accuracy, precision, recall, and F1-score. Moreover, this study provides an in-depth analysis of recent studies and highlights key findings, including state-of-the-art techniques, novel architectures, and innovative approaches to address the shortcomings of the existing methods. Finally, this study provides a summary of the key insights gained from the comparative analysis, highlighting the potential of deep learning in revolutionizing methodologies for crack detection. The findings of this research will serve as a valuable resource for researchers in the field, aiding them in selecting appropriate methods for crack detection and inspiring further advancements in this domain.