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Abstract 
 

The inspection of cracks on the surface of tunnel linings is a common method of evaluate 
the condition of the tunnel. In particular, determining the thickness and shape of a crack is 
important because it indicates the external forces applied to the tunnel and the current 
condition of the concrete structure. Recently, several automatic crack detection methods have 
been proposed to identify cracks using captured tunnel lining images. These methods apply an 
image-segmentation mechanism with well-annotated datasets. However, generating the 
ground truths requires many resources, and the small proportion of cracks in the images cause 
a class-imbalance problem. A weakly annotated dataset is generated to reduce resource 
consumption and avoid the class-imbalance problem. However, the use of the dataset results in 
a large number of false positives and requires post-processing for accurate crack detection. To 
overcome these issues, we propose a crack detection method using a ternary classifier. The 
proposed method significantly reduces the false positive rate, and the performance (as 
measured by the F1 score) is improved by 0.33 compared to previous methods. These results 
demonstrate the effectiveness of the proposed method. 
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1. Introduction 

The market size of facility safety diagnoses in South Korea is approximately 300 billion won, 
of which the safe management of tunnel facilities in Seoul accounts for almost 24% [1]. 
Moreover, considering the uniqueness of tunnel environments, the market share of tunnel and 
concrete facility management is expected to continue to increase. Crack detection is an 
important task in tunnel facility management, through which the structural conditions and 
safety of tunnels can be checked. Cracks in tunnels have various causes, and they are important 
indicators that can be used to predict the conditions and performances of structures. Structural 
cracks can be categorized into horizontal, vertical, and shear cracks, according to the direction 
of propagation. They can be further categorized into structural and non-structural cracks, 
depending on the cause. “Structural cracking” refers to cracks that have evolved and reached a 
state in which the load of the structure is no longer supported, meaning the structure is no 
longer functional. Structural cracking can occur as a result of design errors, external loads 
exceeding the design load, poor construction, or a lack of reinforcing bars. Non-structural 
cracks refer to those cracks that do not fit into this first category. These cracks can cause a 
deterioration in durability and the stability of the structure, and are the result of factors such as 
the corrosion of reinforcing bars [2]. To minimize potential damage due to cracking, periodic 
safety checks of tunnels and structures, as well as structural evaluations, must be repeatedly 
conducted, and repair and reinforcement measures are required for cracks of or exceeding a 
certain size. 

Naked-eye crack inspections require inspectors to block the tunnel lane, photograph the 
inside of the tunnel using a work vehicle, and visually check the captured images to identify 
the cracks then check the condition of the crack in real tunnel. This method determines 
whether or not cracks are present using the subjective opinions of each inspector; thus, it 
struggles to ensure objectivity and requires considerable time and resources. To resolve this 
problem, many crack detection methods based upon image processing techniques have been 
proposed for the images acquired in tunnel scanning procedures. However, crack detection 
methods using traditional image processing techniques suffer from the limitation that they 
only function well in a restricted environment. Furthermore, their performances are not robust 
due to the difficulties of evaluating the images taken in tunnels; for instance, they struggle to 
distinguish between the color of the concrete itself and the actual cracks discolored by 
concrete pouring marks and soot. 

To resolve this problem, crack detection methods using convolutional neural networks 
(CNNs) have been proposed [3], [4], [5], [6]. However, these approaches require a large 
quantity of data, and are at a disadvantage in that accurate ground truth data are required for 
accurate predictions. In turn, expert-annotated data are required to generate these ground truth 
data, which consumes time and resources. Despite these shortcomings, many previous crack 
detection methods have attempted to identify cracks using, well-annotated small datasets. 
These are suitable for crack detection methods employing supervised learning; however, they 
require large well-annotated ground truth data. Moreover, the crack containing areas of the 
images are extremely small, and this class imbalance(crack and non-crack) degrades the crack 
detection performance considerably. As such, there is a great demand for effective crack 
detection networks. 

Identifying the crack shapes is important for automatic tunnel inspection systems because 
detecting the crack precisely and accurately is necessary for measuring the crack thickness and 
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shape. However, accurate crack detection is challenging, and the aforementioned data 
imbalances and insufficiently small well-annotated datasets exacerbate this. Previous crack 
detection methods have attempted to overcome this through post processing. However, 
post-processing methods require a large computational burden on the tunnel inspection system 
and it is dependent on the result of the crack detection method. 

Here, we propose a crack detection method to overcome these shortcomings. The 
contributions of this paper are as follows: 
 We propose a CNN networks for crack detection and demonstrate its superior 

performance through comparisons with previous methods. 
 In the weakly annotated dataset environment, we propose a training strategy that 

combines a ternary classifier, to detect precise and accurate crack results. 
 
The remainder of this paper is as follows. Section 2 describes the traditional and CNN crack 

detection methods and identifies the limitations thereof. Section 3 describes the proposed 
method. The corresponding experimental results are described in Section 4. Finally, Section 5 
concludes the paper, reviewing the results obtained in Section 4. 

2. Related Work 

2.1 Crack Detection Methods based on Traditional Image-Processing 

Techniques 

In terms of traditional crack detection methods employing image processing, numerous 
methods using the intensity differences between cracks and their surroundings have been 
studied. A representative approach for detecting cracks in concrete is that of using the image 
edges [7], [8], [9], [10]. These edge-based methods identify the darker intensity values of 
cracks compared to the surrounding material and employ edge information obtained using, for 
instance, Sobel or Canny edge-detection procedures. Furthermore, numerous methods based 
on domain transformations such as Fourier and Wavelet transforms have been studied [11], 
[12], [13]. However, methods based on domain conversions and edge detection only function 
well in a restricted environment, such as by setting a threshold according to the contrast and 
the crack. To solve this problem, model- and fuzzy-based methods have been proposed [14], 
[15], [16], [17]; these aim to distinguish noises and cracks in existing edge-based methods and 
minimize crack breakage. However, this requires repeated operation depending on the 
environment; thus, they are disadvantaged in that their execution time is long, and they are 
only effective in restricted environments. 

2.2 Crack Detection Methods based on Convolutional Neural Networks 
CNNs are a form of feedforward network, they are widely used in many computer vision 

fields, such as face detection and recognition, image segmentation, and image classification. 
They mimic the visual processing of creatures and are capable of performing recognition tasks 
even when the sizes and positions of the patterns change. To solve problems in the computer 
vision field, it is necessary to design and extract the features of images; however, CNNs can 
automatically extract the features of objects in an image. As a result, CNNs are being used to 
solve many computer vision problems. 

Crack detection approaches using CNN can be largely divided into two types: patch 
classification-based and image segmentation-based methods. Fig. 1 illustrates both methods. 
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Patch classification-based crack detection methods [4], [5], [18] convert the input image 

into patch units and then classify the crack image. These methods have the advantage that the 
resources consumed in generating crack ground truth data are relatively small. However, to 
accurately detect the crack, the size of the patch must be set experimentally. Furthermore, 
when detecting the position of the crack in the patch, post-processing is required, and the patch 
classification-based methods suffer from the class-imbalance problem. 

 Compared to patch-based methods, image segmentation-based methods [3], [6], [19] have 
the advantage of identifying the crack area at the pixel level. This helps identify the actual 
crack characteristics (thickness, length, and overall depth). However, compared to the 
patch-based method, the network depth required is relatively large, and there are further 
disadvantages in that more resources are consumed in generating ground truth data. Moreover, 
the image segmentation-based methods suffer from the same problems of data imbalance as 
the patch-based methods. 

 
(a) Crack detection method based on patch-wise classification 

 

 
(b) Crack detection method based on binary class image segmentation 

 

Fig. 1. Crack detection methods based on classification and segmentation 
 

2.3 Class-Imbalance Problem 

Class-imbalance problems have many adverse effects in deep learning. For example, if a 
severe data imbalance occurs in supervised learning-based network training, data with a small 
number of classes may be excluded from the final prediction stage or may cause noise. To 
resolve these problems, multi-task [20], semi-supervised [21], and weakly supervised learning 
methods [22] have been proposed. 
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Class imbalances in crack detection also cause serious problems, leading to network 
predictions of zero (background class) in the training stage and inference. This is because the 
cracks on the concrete surface are extremely small and thus occupy only a small proportion of 
the entire image. To solve this problem, previous crack detection methods have used a label 
weight [23], [6], [19], [20] determined by the number of crack containing pixels in the ground 
truth data. The weight control, determined by the label weight during the training stage with 
only pure dataset, is stable. However, in the case of using both datasets, the class weight 
amplifies false positive. Therefore, while avoiding the zero conversion problem, to suppress 
the false positive method is required simultaneously. 

3. Proposed Method 
In this section, we describe the proposed method in detail. It consists of four elements: (1) 

the overall features of the crack images and collected datasets, (2) the network structure, (3) 
the loss function, and (4) the training strategy. 

3.1 Overall Features of the Crack Images 
The characteristics of images taken of tunnel-lining cracks are as follows: 

1. On the surface of the tunnel lining, cracks have lower intensity values than the surrounding 
concrete. However, cracks that differ from their surroundings by a relatively small intensity 
(as a result of soot pollution around the crack) also occur. 
2. Although differences can arise as a result of the distance between the tunnel lining and 
imaging device, most cracks are small and thin. Cracks on tunnel-lining surface images taken 
from a large distance have a thickness of 1–4 pixels, cracks in tunnel-ceiling images taken by 
an imaging device on the road have a thickness of 1–2 pixels. This is an extremely small 
proportion of the entire image. 
3. Cracks may appear differently depending on the imaging technique employed and the shape 
of the tunnel-lining surface. Flaking/exfoliating may also occur in or around the cracks. 

Fig. 2 shows the RGB values of the intensity line scan of two crack images. The purple box 
represents the point of contact between the scan line and the crack. The upper left-hand panel 
of Fig. 2 shows a heavily soot-contaminated crack in the surface of the tunnel lining. As 
previously described in the characteristics of crack 1, it can be seen that in the left-hand purple 
box, the differences between the surrounding pixel values and the crack pixel values are small 
due to contamination. Furthermore, the right-hand box has a lower intensity value than the 
left-hand one; as described above, a single crack may exhibit characteristics of differing 
intensities. The bottom left-hand panel of Fig. 2. shows a soot-polluted concrete image. 
Compared to the upper left-hand image, the degree of contamination is relatively small; thus, 
the crack is visible to the naked eye, and the intensity difference of the crack is clear (as can be 
seen from the intensity distribution of the scan line). In the image, the left-hand purple box can 
be seen as a crack; however, in the results of the scan line, there are two minimum values. This 
is due to the presence of noise around the crack. 
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Fig. 2. Intensity values of the line scan 
 

3.1.1 Data Collection 

  

Fig. 3. Image-data collection vehicle (tunnel-lining scanning) 
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Fig. 4. Design of the scanning vehicle 

 
Capturing the tunnel lining is the most important task in crack detection. The imaging 

machine must satisfy various conditions for obtaining a clear crack image. In addition, 
scanning of the tunnel lining can cause traffic congestion, thus requiring special vehicles. In 
order to satisfy the laws and regulations, to ensure the safety of the photographer and to shoot 
the lining accurately, we have produced a vehicle that meets all requirements [24]. The Fig. 3, 
Fig. 4 show that the scanning vehicle and the modules of the scanning vehicle. For imaging the 
tunnel lining, the 24 of cameras were used. The Table 1 shows the camera setting. 

 
Table 1. Camera settings  

 Division 
Shooting 
Area 

Camera Set-up 
Vehicle 
Speed ISO Shutter Diaphragm 

0.3 m × 0.3 m 
(2.6 m) 800–1,600 1/4000 

–1/5000 2.8–5.6 20 km/h 

3.1.2 Data Annotation 

The collected images were annotated and the data divided into two categories according to 
the annotator’s annotation format. The first was the case of pixel-by-pixel annotation. This 
was conducted by a safety expert, and the annotations referred to the presence and thicknesses 
of cracks. For convenience, this dataset is referred to as the “pure dataset” in this paper. The 
second type of data was coarse data, which indicated only the presence or absence of cracks; it 
was annotated by the public. This data did not contain the thicknesses of internal cracks and 
only tagged their approximate locations. The annotated pixel thicknesses were typically 7–13 
pixels, and the cracks’ center lines and annotations were not matched. This dataset is hereafter 
referred to as the “coarse dataset.” Both datasets were used in this paper; they were produced 
in highly different proportions depending on the time and resources available for annotation 
work. For the pure data, an inspector measured the thicknesses of cracks in real tunnels and 
annotated the final pixel-wise image for the cracks identified. Fig. 5 presents an example of 
the annotated crack dataset: (a) shows an example from the pure dataset, the crack is one pixel 
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thick and the line follows it clearly; (b) shows an example from the coarse dataset, the 
annotation crack is thicker than the real crack of original input image. 

 

    
(a) (b) 

Fig. 5. Captured image and ground truth 
(a) Pure dataset (b) Coarse dataset 

 

3.2 Crack Detection Network Architecture 
As previously mentioned, the class imbalance of the pure dataset results in a zero 

conversion, and using the both dataset results in a large false positive. To resolve these issues, 
we propose a crack detection method employing a crack detector and a ternary classifier. The 
overall flow of our method is shown in Fig. 6. 

Our crack detection scheme was inspired by U-Net [25] based semantic segmentation 
networks, which are widely used in segmentation tasks. Other existing crack detection 
methods have followed the U-Net schema; that is, they have used local and global information 
extracted from each layer of the encoder and its end, respectively. The extracted features are 
fused in the decoder at each layer. Our detector was also built around this mechanism, 
although we changed the sequential decoders into parallel structures for faster inference.  

 

 
Fig. 6. Overview of proposed method 
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Fig. 7. Detail of the fusion block and the ternary classifier 

The (n) in convolution layer of the fusion block denotes dilated rate of dilated convolution 
 

The structure of our encoder follows the basic structure of VGG [26] with Short-cut 
mechanism [27], and the structure of our decoder uses one fusion block for each scale. The last 
convolution block of the encoder contains the global information of the input image. In the 
proposed method, an Atrous Spatial Pyramid Pooling (ASPP) [28] module was added at the 
end of the encoder to extract rich global information via an atrous convolution, and it was also 
added to each decoder layer. The fusion block of each layer fuses the global and local 
information; finally, the combined information generates results through two convolution 
blocks. The feature extractor of ternary classifier is built same as encoder of crack detector and 
the ternary classifier is consist of three fully connected layers. The detail of fusion block and 
ternary classifier is shown in The Fig. 7.  

3.3 Loss Function 
Given a training dataset containing 𝑁 images as 𝑆 =  {(𝑋𝑛,𝑌𝑛,𝑍𝑛  ),𝑛 =  1, . . . ,𝑁}, where 

𝑋𝑛 = {𝑥𝑖
(𝑛), 𝑖 = 1, … , 𝐼} denotes the raw input image; 𝑌𝑛 = {𝑦𝑖

(𝑛), 𝑖 = 1, … , 𝐼,𝑦𝑖
(𝑛) ∈ {0,1}}} 

denotes the ground truth corresponding to 𝑋𝑛; 𝑍𝑛 = {𝑧𝑖
(𝑛),∈ {𝐵,𝑃,𝐶}} denotes the ground 

truth belonging to; {𝐵,𝑃,𝐶} refers to the background, pure, and coarse datasets, respectively; 
𝐼 denotes the number of pixels in every image; and 𝐾 denotes the decoder layer of the crack 
detector 𝐷, the extracted feature information of each decoder layer can be formulated as 
𝐹(𝑘) = �𝑓𝑖

(𝑘), 𝑖 = 1, … , 𝐼�. Furthermore, the result of the crack detector can be defined as 
𝐹(𝑓𝑢𝑠𝑒) = {𝑓𝑖𝑘 , 𝑖 = 1, … , 𝐼}. 
The crack detection problem is thus converted into one of binary classification, where the 
proportion of cracks in the whole dataset is extremely small. To overcome the data-imbalance 
problem, we adopted a weighted cross-entropy loss to measure the difference in layer 
information [6],[19],[20] : 

𝑙(𝐹𝑖;𝑊𝐷) = −�  𝑊𝑒𝑖𝑔ℎ𝑡0 ∗ 𝑙𝑜𝑔 𝑃𝑟(𝐹𝑖 = 0|𝑋𝑖 ,𝑊𝐷)
𝑖∈𝐶𝑟𝑎𝑐𝑘

 

                       −� 𝑊𝑒𝑖𝑔ℎ𝑡1 ∗ 𝑙𝑜𝑔 𝑃𝑟(𝐹𝑖 = 1|𝑋𝑖 ,𝑊𝐷),
𝑖∈𝐵𝑎𝑐𝑘𝑔𝑟𝑜𝑢𝑛𝑑

 
(1) 
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𝐿(𝑊𝐺) = ���𝑙�𝐹𝑖
(𝑘);𝑊𝐷� + 𝑙�𝐹𝑖

𝑓𝑢𝑠𝑒;𝑊𝐷�
𝐾

𝑘=1

� ,
𝐼

𝑖=1

 (2) 

 
where 𝑃𝑟(∙) refers to the probability of a positive or negative value for a pixel in the predicted 
map; 𝑊𝐷 denotes the crack detector network; and 𝑊𝑒𝑖𝑔ℎ𝑡0 and 𝑊𝑒𝑖𝑔ℎ𝑡1 denote the crack 
and background class weights, respectively. Let 𝐶0 and 𝐶1 be the total number of background 
and crack, we set 𝑊𝑒𝑖𝑔ℎ𝑡0 = 1.0 and 𝑊𝑒𝑖𝑔ℎ𝑡1 = 𝐶0

𝐶1
  same as [20]. 

The ternary classifier converts the problem into one of 3-class classification [29]. When two 
variables 𝑥 and 𝑦 exist, the relationships between them are expressed as follows: 

𝑥 > 𝑦, 𝑖𝑓 𝑥 − 𝑦 > 𝜏 
(3) 𝑥 ≈  𝑦, 𝑖𝑓 |𝑥 − 𝑦| ≤ 𝜏 

𝑥 < 𝑦, 𝑖𝑓 𝑥 − 𝑦 < 𝜏 
where 𝜏 is the threshold. The relationships between samples 𝑧(𝑟𝑒𝑓) and 𝑧(𝑡𝑎𝑟) can also be 
expressed in a similar way:   

𝑧(𝑟𝑒𝑓) < 𝑧(𝑡𝑎𝑟), 𝑖𝑓 𝑧(𝑟𝑒𝑓)  ∈ 𝑃, 𝑧(𝑡𝑎𝑟) ∈ 𝐶 

(4) 𝑧(𝑟𝑒𝑓) < 𝑧(𝑡𝑎𝑟), 𝑖𝑓 𝑧(𝑟𝑒𝑓)  ∈ 𝐵, 𝑧(𝑡𝑎𝑟) ∈ 𝐶 
𝑧(𝑟𝑒𝑓) < 𝑧(𝑡𝑎𝑟), 𝑖𝑓 𝑧(𝑟𝑒𝑓)  ∈ 𝐵, 𝑧(𝑡𝑎𝑟) ∈ 𝑃 
𝑧(𝑟𝑒𝑓) ≈  𝑧(𝑡𝑎𝑟), 𝑖𝑓 𝑧(𝑟𝑒𝑓) = 𝑧(𝑡𝑎𝑟) 

We use 𝑞𝑟𝑒𝑓,𝑡𝑎𝑟  to denote the ground truth relationship between 𝑧(𝑟𝑒𝑓)  and  𝑧(𝑡𝑎𝑟), and 
𝑝𝑟𝑒𝑓,𝑡𝑎𝑟 to denote the predicted relationship from the ternary classifier. The distance can be 
expressed as 

Distance = 𝐿(𝑊𝑇𝑒𝑟) = ���𝑞𝑘
𝑖,𝑗

2

𝑘=0

𝑡𝑎𝑟

𝑗=0

𝑟𝑒𝑓

𝑖=0

𝑙𝑜𝑔 𝑝𝑘
𝑖 ,𝑗 , (5) 

where 𝑞𝑟𝑒𝑓 ,𝑡𝑎𝑟 = {(𝑞0
𝑟𝑒𝑓,𝑡𝑎𝑟, 𝑞1

𝑟𝑒𝑓 ,𝑡𝑎𝑟, 𝑞2
𝑟𝑒𝑓 ,𝑡𝑎𝑟),  𝑞𝑟𝑒𝑓,𝑡𝑎𝑟 ∈ {0,1}} and 𝑝𝑟𝑒𝑓,𝑡𝑎𝑟 =

{ (𝑝0
𝑟𝑒𝑓,𝑡𝑎𝑟,𝑝1

𝑟𝑒𝑓,𝑡𝑎𝑟,𝑝2
𝑟𝑒𝑓,𝑡𝑎𝑟),𝑝𝑟𝑒𝑓 ,𝑡𝑎𝑟 ∈ {0,1}}. Therefore, the crack detector loss function 

can be expressed as 

𝐿𝐶𝑟𝑎𝑐𝑘_𝐷𝑒𝑡𝑒𝑐𝑡𝑜𝑟 = 𝜆𝐿(𝑊𝐷) + (1 − 𝜆)𝐿(𝑊𝑇𝑒𝑟). (6) 

 

3.4 Training Strategy 
The proposed training method consisted of two steps. The first was to train the two networks 

separately. The purpose of this step was to train the detector to recognize the features of the 
cracks and the classifier to determine their thicknesses and lengths from each ground truth. For 
this stage, the crack detector was trained using the dilated pure data, and the ternary classifier 
was trained using the entire dataset. A morphology operation was used to generate the 
expanded ground truths of the pure dataset. 

 We trained using the dilated pure ground truths, to avoid the zero conversions that can 
occur when only the pure dataset is used. It can be seen that the same occurs in coarse data. 
However, if the coarse data are used in the first step, the detector is trained the large number of 
false positives. In a similar way, training with eroded coarse data means that the detector is 
trained with incorrect labels; as such, it cannot guarantee that the eroded label contains the 
crack. The ternary classifier can control the large false positive rate in first step; however, the 
time taken to explore optimal weights was larger with the coarse dataset.  
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In the second stage, the crack detector was trained on the entire dataset using the ternary 
classifier. In this stage, the ternary classifier classified the relationships between the detector 
results and dataset samples. The classifier suppressed false positives and prevented the 
zero-conversion training problem of the detector. Table 2 shows the second stage ground truth 
table of the ternary classifier. 

 
Table 2. Ternary classifier ground truth table 

Reference Target Expression Meaning 

Pure 
Pure ≈ Preserve 

Coarse  <  Thin 
Background > Thick 

Coarse 
Pure ≈ Thin 

Coarse < Thin 
Background > Thick 

Background 
Pure < Thin 

Coarse < Thin 
Background ≈ Preserve 

 
For example, the reference image ground truth set was obtained from the coarse dataset, and 
the target was selected therefrom. The actual relationship between the two data was 𝑧(𝑟𝑒𝑓)  ≈
 𝑧(𝑡𝑎𝑟). Because the desired result of the crack detector is “pure,” it was trained based on the 
relationship  𝑧(𝑟𝑒𝑓) <  𝑧(𝑡𝑎𝑟). Furthermore, when the reference is from the background dataset 
and the target is from the pure one, the result of the detector is “background.” Thus, the 
detector was trained to satisfy 𝑧(𝑟𝑒𝑓) <  𝑧(𝑡𝑎𝑟) and minimize the noise. 

4. Experiments and Results 
This section discusses the crack detection experiments. First, we describe the dataset and 

experimental settings; then, we compare the experimental results of the proposed method with 
those of existing crack detection methods. Finally, we compare and analyze the performances 
achieved using different settings for the proposed method. 
 

4.1 Experimental Settings 
1) Implementation: We implemented our network using Pytorch, a popular public 
deep-learning framework. A normalization layer was used between the convolutional layers of 
the encoder, decoder, and ternary classifier, and group normalization was applied to reinforce 
the learning of small batch sizes. The number of groups was set to 16. All convolution weights 
were initialized using the method developed by Kaiming He [30]. For up-sampling, bilinear 
interpolation was applied. Adam optimization [31] was used and the learning rate was set as 
1e-4. For the dilation operation of the first training step, we used disk and five-pixel structure 
elements, the weight value of the loss function between the crack detector and ternary 
classifier was set to 0.5. The network was trained using eight images per mini-batch. The beta 
and weight decay used were 0.9 and 0.0005, respectively, and the networks were trained for 50 
epochs. In this study, all networks were trained on a single NVIDIA TITAN-RTX. 
2) Dataset: Datasets were taken from a total of five tunnels and used to compare the proposed 
method against existing ones. The dataset consisted of three small pure datasets and two large 
coarse datasets. Table 3 describes each dataset.  
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Table 3. Dataset specifications 

Dataset Resolution Dataset Size 
(Crack/ Background) 

Annotation 
Style 

Masung 256 × 256 1,857 / 13,798 Pure 
Habuncheon 256 × 256 672 / 970 Pure 

Sangock 256 × 256 408 / 847 Pure 
Banggyo 256 × 256 5,015 / 34,258 Coarse 
Gwangji 256 × 256 1,120 / 3,256 Coarse 
Hwasan 256 × 256 6,300 / 15,727 Coarse 

 
3) Metric: We used the recall, precision, F1-score, and inference time to evaluate the crack 
detection methods. 
4) Performance-comparison methods: We measured and compared the performance of the 
proposed method with those of previous methods. The proposed method was compared to 
deep learning-based semantic-segmentation methods (U-Net [25], Att-UNet [33], and 
Deeplab v3+ [32]) and crack detection methods (Han's method [3], Liu's method [6], and Zou's 
method [19]). The previous methods and the proposed method were trained using the datasets 
of Masung, Habuncheon, Banggyo, Gwangji, and Hwasan, and performance was measured 
based on the SanGock and Habuncheon tunnels. 

4.2 Evaluation Results 

Table 4. Quantitative evaluation of the test dataset 

Network 
Sangock Habuncheon Processing 

Time 
(second) Recall Precision F1-Score Recall Precision F1-Score 

U-Net 0.85 0.20 0.32 0.75 0.16 0.26 0.01 

Att-UNet 0.87 0.17 0.28 0.81 0.18 0.29 0.013 

Deeplab 
v3+ 0.84 0.22 0.35 0.80 0.22 0.35 0.045 

Han’s 
method 0.80 0.25 0.38 0.71 0.19 0.30 0.013 

Liu’s 
method 0.84 0.18 0.30 0.77 0.17 0.28 0.0086 

Zou’s 
method 0.85 0.22 0.35 0.77 0.14 0.24 0.01 

Proposed 
Method(A) 0.92 0.20 0.33 0.83 0.18 0.30 0.028 

Proposed 
Method(B) 0.88 0.47 0.61 0.75 0.45 0.56 0.028 

 
4.2.1. Overall Performance Comparison with Previous Deep Learning-based 
Methods. 
In Table 4, we compare the proposed method with the previous semantic-segmentation and 
crack detection methods, using the Sangock and Habuncheon tunnel test data. To evaluate the 
performance of the proposed crack detection model, the differences in results obtained in the 
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presence (proposed method B) and absence (proposed method A) of a ternary classifier were 
measured. To analyze the tendency of the crack detectors according to the data sets, previous 
methods were trained without the ternary classifier. As can be seen in Table 4, the previous 
methods and proposed method (A) showed high recall performance. However, these methods 
also achieved low-precision results. This is because the coarse dataset included a wider range 
of crack classes than the pure dataset. In this case, the pure dataset ground truth cannot be 
accurately used with the coarse dataset in the training step, and the crack detector produces a 
false positive. The results of the proposed method (A) in both tunnels exhibited the highest 
recall compared to the previous methods; however, it also showed low-precision results. On 
the other hand, when both the detector and classifier of the proposed method were used, the 
performance was improved by 0.08, 0.29, and 0.33 in terms of the recall, precision, and 
F1-score for the Sangock tunnel, respectively, compared with the previous methods. 
Furthermore, the results of the proposed method exhibited performance improvements of 0.04, 
0.16, 0.32 in terms of the recall, precision, and F1-score, respectively, compared to previous 
methods for the Habuncheon tunnel. When both networks of the proposed method were used, 
the performance showed average performance differences of -0.06, 0.27, and 0.27 in terms of 
recall, precision, and F1-score, respectively, compared to the crack detector alone. This is 
significantly higher in terms of precision than the detector alone. In Table 3, the processing 
time indicates the inference speed of each frame. It shows similar speeds according to the 
similarity of the structures. The result of Liu’s method showed the highest processing speed; 
this method was built using an encoder and several up-sampling layers. U-Net and Zou’s 
method showed an almost identical processing time, Zou’s method is based around U-Net and 
changes only the skip-connection mechanism. The Deeplab v3+ exhibited the lowest speed in 
the table, this network structure has the largest architecture. The inference speed of the 
proposed method was slower than that of almost all previous methods, but it was faster than 
that of Deeplab v3+. In terms of overall performance, the proposed method showed a slightly 
slower processing speed than the other methods; however, it shows greatly improved results.  

Figs. 8 and 9 show the crack detection results of the proposed method and the previous 
methods. The first row is the input image, and the second row is the ground truth. The ground 
truth image has a one-pixel crack thickness in Figs. 8 and 9. As previously mentioned, the 
ground truth was annotated by structure-safety experts, and the crack thickness was measured 
via naked-eye inspections. 

In column (a) of Fig. 8, the input image exhibits low contrast. The results of previous 
methods and the proposed method (A) show a larger false positive rate than with the classifier 
and the ground truth. The results of previous methods show that the location of the crack is 
detected; however, three individual cracks are detected as one. On the other hand, the 
proposed method detected all cracks accurately; however, noise was detected at the top of the 
image. In the (b) column, all methods detected the middle and right-hand cracks but 
misdetected the left-hand soot as a crack. The results of our proposed method show a thinner 
crack than previous methods; however, the noise is misdetected on the left-hand side. In the 
middle of the image results, the proposed method and Deeplab v3+ show a disconnected crack. 
In the (c) column, the left- and right-hand cracks are disconnected in the ground truth. The 
results of the proposed method (A) and Han’s method show the disconnected cracks, the 
remainder all show the connected result. In the (d) column of Fig. 8, all methods detect the 
shear crack in the image; however, the results of Attention U-Net, Deeplab v3+, and the 
proposed method (B) show some noises along with the detected crack. 

 In column (a) of Fig. 9, the input image is blurred and the surface is discolored. The results 
of all methods (asides from the proposed method(B)) show a large false positive rate. 
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Furthermore, the results of Liu’s method show a misdetection result on the right-hand side of 
the image. In the (b) column of Fig. 9, the results of previous methods show thicker results 
than the proposed method, and Zou’s method shows the disconnected crack. The input image 
of column (c) contains soot and concrete formwork impressions. The input image contains a 
large quantity of noise; however, the results of Attention U-Net, Deeplab v3+, and the 
proposed method show the crack location more accurately than the others. In column (d) of 
Fig. 9, the input image contains three reinforcing bars. The previous methods detected the bars 
and cracks as one crack, without the proposed method. At the center of the crack (close to the 
reinforcing bar), soot is detected as a crack under the proposed method. 

The results of the proposed method are shown in Figs. 8 and 9; they are significantly more 
precise than those of previous methods. These results show that the ternary classifier works 
effectively in crack detection. Previous methods detected the correct locations of cracks; 
however, their results showed large false positive, as occurs with the coarse dataset. Even 
though the results of column (b) in Fig. 8 showed a difference in crack thickness between the 
left- and right-hand sides, these results were also thicker than the ground truth, and the 
remainder also exhibited a large false positive. On the contrary, the results of the proposed 
method (B) consistently show a thin and accurately detected crack. Thus, it can be seen that the 
ternary classifier controls the weights of the detector in the training step for all datasets.  
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Fig. 8. Comparison of results obtained by different methods on four sample images from Sangock 

tunnel 
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Fig. 9. Comparison of results obtained by different methods on four sample images from Habuncheon 

tunnel 
 
4.2.2. Effects of Dilation on Pure Ground Truth Dataset. 
In the first training stage, the crack detector was trained using only the dilated pure ground 
truths. The proportion of cracks in the ground truths of the pure dataset is extremely small it 
can result in zero conversion and may negatively impact the detector training in the second 
stage. To confirm the effects of dilated ground truths on the pure dataset, we conducted this 
experiment using different degrees of dilation. The detector of the proposed method used only, 
and it trained with Masung tunnel training set. 
  

Table 5. Results of crack dilation experiment 
Dilation Recall Precision F1-score 

None 0.08 0.78 0.15 
3 0.22 0.45 0.3 
5 0.4 0.31 0.35 
7 0.62 0.23 0.34 
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Table 5 shows the performance of the method (when trained using different dilation degrees) 
in terms of the recall, precision, and F1-score. As the dilation degree was increased, the 
performance of the recall increased, whereas the precision tended to decrease. For the detector 
training with a ground truth dilated by three pixels, the recall improved by 0.14, and the 
precision decreased by 0.33. Furthermore, when training with a ground truth dilated by seven 
pixels, the recall improved by up to 0.54, but the precision decreased by 0.55. This shows that 
the crack detection results using the dilated ground truths of the pure dataset exist in a trade-off 
relationship, and training the detector using only the dilated pure dataset is unsuitable. 
 
4.2.3. Effect of the Weightings between Detector and Classifier. Thus far, the 
results of the experiments above highlight the role of the ternary classifier as a suppression 
controller in the training step. To confirm to what extent the ternary classifier affects the 
weighted detector (λ), we experimented using different weightings. In the training step, the 
weights control the sensitivity to crack thickness. In the first step of the experiment, 0.3, 0.5, 
and 0.7 weights were tested and a five-pixel disk structure element was used for dilation. 
 

Table 5. Accuracy comparison for different weightings of the proposed method 
Weight Recall Precision F1-score 

0.3 0.82 0.46 0.59 
0.5 0.64 0.52 0.57 
0.7 0.38 0.73 0.44 

 
Table 6 shows the performance of the proposed method depending on the weightings. When 
the weight was set to 0.3, the recall showed the highest score; however, the precision was low. 
Conversely, when the weight was set to 0.7, the recall was lowest and the precision was 
highest. This suggests that the ternary classifier affects the crack detector according to weight, 
and both models exist in a trade-off relationship. When the weight was set to 0.3, 0.5, and 0.7, 
the performance improved compared to those of the previous methods in Table 3, and when 
the weight was set to 0.3, the detector exhibited optimal performance. 
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Fig. 10. Comparison of results obtained by different weights 
 

Fig. 10 shows the crack detection results using different weights. When the weight was set 
to 0.3, the results were thicker than those found using 0.5 and 0.7 weights. This is due to the 
suppression ratio of the ternary classifier. Furthermore, under a weight of 0.7, the results 
showed the thinnest crack; however, the connectivity of the crack was broken. This suggests 
that the thickness of the crack is suppressed by the classifier. However, the result for 0.3 and 
0.5 in Fig. 10, and the results of the (a), (b), (c), and (d) columns, show that the thickness is 
reduced but connectivity is preserved. 

This experiment shows the effect of the weightings between detector and classifier. Tables 
3 and 5 show that the proposed method (using a ternary classifier) gives a better performance 
than previous methods; however, through this experiment, we confirm that the proposed 
method exists in a trade-off relationship, depending on the loss weight. 

5. Conclusion 
In this paper, we proposed a method of detecting cracks on the surface of tunnel linings. The 

network was designed based on image semantic segmentation and a ternary classifier, which 
was modified for faster inference speeds and improved performance. To solve the 
class-imbalance problem present in the acquired data, the proposed method used a dilated 
ground truth and ternary classifier, which improved the performance of the crack detector. 
Tunnel-lining images were collected from six tunnels in South Korea and used for training and 
evaluating the proposed method. The experimental results show that the performance of the 
proposed method is superior to that of the previous segmentation based and crack detection 
methods. In future research, we will endeavor to increase the performance and reliability of the 
algorithm by collecting more data. Furthermore, we will develop an algorithm that detects 
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cracks, leaks, peeling flakes, and other defects that are dangerous to the safety of tunnels, 
based on the results of the method proposed here. 
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Appendix 

Automatic Crack Detection Method 

In this appendix, we explain about the automatic crack detection method. The collected data 
using working vehicle is converted to the stitching image for generating whole tunnel image 
map. The image to be used for image stitching must be carefully selected as the camera may be 
out of focus when capturing the lining. One span image (one span ≈10m, one camera) usually 
has a resolution of 3000 ×  38000 to 4000 ×  45000 depending on the speed of the vehicle 
and the shape of the tunnel, and 24 stitching images (24 cameras). Fig. 11 shows the single 
stitched image (single span, one camera) 

 

 
Fig. 11. Example of the single span stitched image 

 
The resolution of a stitched image is too big to handle at once, the image divide into patch 

images (256 × 256 is used in this paper) and each patch is used for the crack detector in 
parallel way then they are used detection result. When the average tunnel length in South 
Korea is 739m, the execution time of each procedure must be considered and it is very 
important to analyze the shape of the crack showing the propagation direction of the crack. 
However, the basic information generation of a crack detection system using CNN is very 
expensive, and training a network using a coarse data set predicts the wrong crack results. 
Therefore, we proposed an efficient crack detection method using coarse and pure dataset 
generated at a low cost. Fig. 12 is the prediction result of the proposed method using the 
images A and B of Fig. 11. The input data is sample span of Bongsan Tunnel in South Korea 
and the resolution of the A, B is 2880 × 3000. The results show that the shape of predicted 
crack and ground truth is simliar and the thickness is almost correct. When comparing the 
result with the previous method in Figs. 8 and 9, the efficiency of the proposed method can be 
confirmed. 
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Input Image A 

 
 
 

Ground Truth A 
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Inference Result A 

 
 
 

Input Image B 
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Ground Truth B 

 
 
 

Inference Result B 

 
Fig. 12. Result of automatic crack detection 
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