Asphalt Concrete Pavement Surface Crack Detection using Convolutional Neural Network

합성곱 신경망을 이용한 아스팔트 콘크리트 도로포장 표면균열 검출

  • Received : 2019.06.07
  • Accepted : 2019.09.03
  • Published : 2019.11.01


A Convolution Neural Network(CNN) model was utilized to detect surface cracks in asphalt concrete pavements. The CNN used for this study consists of five layers with 3×3 convolution filter and 2×2 pooling kernel. Pavement surface crack images collected by automated road surveying equipment was used for the training and testing of the CNN. The performance of the CNN was evaluated using the accuracy, precision, recall, missing rate, and over rate of the surface crack detection. The CNN trained with the largest amount of data shows more than 96.6% of the accuracy, precision, and recall as well as less than 3.4% of the missing rate and the over rate.

본 연구에서는 아스팔트 콘크리트 도로포장의 표면균열 검출을 위해 합성곱 신경망을 이용하였다. 합성곱 신경망의 학습에 사용되는 표면균열 이미지 데이터의 양에 따른 합성곱 신경망의 성능향상 정도를 평가하였다. 사용된 합성곱 신경망의 구조는 5개의 층으로 구성되어있으며, 3×3 크기의 convolution filter와 2×2 크기의 pooling kernel을 사용하였다. 합성곱 신경망의 학습을 위해서 도로노면 조사 장비를 통해 구축된 국내 도로포장 표면균열 이미지를 활용하였다. 표면균열 이미지 데이터를 학습한 합성곱 신경망 모델의 표면균열 검출 정확도, 정밀도, 재현율, 미검출율, 과검출율을 평가하였다. 가장 많은 양의 데이터를 학습한 합성곱 신경망 모델의 표면균열 검출 정확도, 정밀도, 재현율은 96.6% 이상, 미검출율, 과검출율은 3.4% 이하의 성능을 나타내었다.



Supported by : 한국연구재단

본 연구는 2018년 한국연구재단 이공분야기초연구지원사업의 연구비지원(2018R1D1A1B07048341)에 의해 수행되었습니다.


  1. Zhang, L.; Yang, F.; Zhang, Y.D.; Zhu, Y.J. (2016), Road crack detection using deep convolutional neural network, In Proceedings of the 2016 IEEE International Conference on Image Processing (ICIP), Phoenix, AZ, USA, 25--28 September 2016; pp. 3708-3712.
  2. FENG, C.; Liu, M.-Y.; Kao, C.-C.; Lee, T.-Y. (2017), Deep Active Learning for Civil Infrastructure Defect Detection and Classification, International Workshop on Computing in Civil Engineering (IWCCE), pp. 298-306.
  3. Eisenbatch, Markus, et al. (2017), How to get pavement distress detection ready for deep learning? A systematic approach, 2017 international joint conference on neural networks (IJCNN). IEEE, pp. 2039-2047.
  4. Loffe, S.; Szegedy, C. (2015), Batch normalization: Acceleration deep network training by redusing internal covariate shift, arXiv preprint arXiv: 1502.03167.
  5. Pauly, L.; Hogg, D.; Fuentes, R.; Peel, H. (2017), Deeper networks for pavement crack detection, In Proceedings of the 34th International Symposium on Automation and Robotics in Construction (ISARC). IAARC, pp. 479-485.
  6. Wu, J. (2017), Introduction to convolutional neural networks. National Key Lab for Novel Software Technology, Nanjing University. China, 5-23.
  7. Keskar, N. S.; Mudigere, D.; Nocedal, J.; Smelyanskiy, M.; Tang, P. T. P. (2016), On large-batch training for deep learning: Generalization gap and sharp minima, arXiv preprint arXiv; 1609.04836.
  8. Ruder, S. (2016). An overview of gradient descent optimization algorithms, arXiv preprint arXiv: 16090.04747.
  9. Gopalakrishnan, K. (2018). Deep Learning in Data-Driven Pavement Image Analysis and Automated Distress Detection: A Review. Data 3(3), 28.
  10. Kim, J. H.; Kim, J. R.; Moon, H. C. (2008), Development of Pavement Distress Survey System, Journal of Korean Society of Road Engineers (KSRE), pp. 475-484.
  11. Choi, Y. S. (2019), Concrete Surface Defect Detection using Convolutional Neural Network, Department of Architectural Engineering Graduate School, Chungbuk National University.
  12. Radford, A.; Metz, L.; Chintala, S. (2015), Unsupervised representation learning with deep convolutional generative adversarial networks, arXiv preprint arXiv:1511.06434.
  13. Powers, D. M. (2011), Evaluation: from precision, recall and F-measure to ROC, informedness, markedness and correlation.
  14. Bengio, Y.; Goodfellow, I. J.; Courville, A. (2015), Deep learning, book in preparation for mit press, Disponivel em
  15. Goodfellow, I.; Bengio, Y.; Courville, A. (2016), Deep learning, MIT press, pp. 321-362.
  16. Hu, J.; Shen, L.; Sun, G.; (2018). Squeeze-and-excitation networks. In Proceedings of the IEEE conference on computer vision and pattern recognition (pp. 7132-7141).
  17. Rababaah, H.; Vrajitoru, D.; Wolfer, J. (2005), Asphalt pavement crack classification: a comparison of GA, MLP, and SOM, In Proceedings of Genetic and Evolutionary Computation Conference, Late-Breaking Paper.
  18. Koch, C.; Brilakis, I; (2011), Pothole detection in asphalt pavement images, Advanced Engineering Informatics, 25(3), pp. 507-515.
  19. Sorncharean, S.; Phiphobmongkol, S. (2008), Crack detection on asphalt surface image using enhanced grid cell analysis, In 4th IEEE International Symposium on Electronic Design, Test and Applications (delta 2008), pp. 49-54.