• 제목/요약/키워드: crack distribution

검색결과 705건 처리시간 0.028초

Probability-Based Durability Design for Concrete Structure with Crack: Bimodal Distribution of Chloride Diffusion

  • Na, Ung-Jin;Kwon, Seung-Jun
    • 한국건설순환자원학회논문집
    • /
    • 제3권1호
    • /
    • pp.22-33
    • /
    • 2015
  • Chloride ions in RC (Reinforced Concrete) structures can cause very severe corrosion in reinforcement steel. It is generally informed that chloride penetration can be considerably accelerated by enlarged chloride diffusion due to cracks. These cracks play a role in main routes through which chloride ions penetrate into the concrete, and also lead to steel corrosion in RC structures exposed to chloride attack, such as port and ocean structures. In this paper, field survey including evaluation of crack and chloride concentration distribution in concrete is performed to investigate an effect of crack on chloride diffusion. The service life of cracked concrete exposed to the marine environmental condition is estimated considering the crack effect on chloride diffusion. For this purpose, diffusion coefficients in cracked concrete are obtained based on the field survey. Using the relationship between diffusion coefficients in the cracked concrete and the crack widths, service life of the cracked concrete is predicted in a probabilistic framework. A bimodal distribution with two peaks, consisting of a weighted sum of two normal distributions is introduced to describe chloride diffusion of the concrete wharf with crack.

일정 응력확대계수 제어하의 피로균열전파수명 분포의 파라메터 특성에 관하여 (Characteristics of Parameters for the Distribution of Fatigue Crack Growth Lives under Constant Stress Intensity Factor Control)

  • 김선진;김영식;정현철
    • 한국해양공학회:학술대회논문집
    • /
    • 한국해양공학회 2002년도 추계학술대회 논문집
    • /
    • pp.301-306
    • /
    • 2002
  • The characteristics of parameters for the probability distribution of fatigue crack growth lives by the non-Gaussian random process simulation method is investigated. In this paper, the material resistance to fatigue crack growth is treated as a spatial random process, which varies randomly on the crack surface. Using the previous experimental data, the crack length - the number of cycles curves are simulated. The results are obtained for constant stress intensity factor range conditions with stress ratio of R=0.2, three specimen thickness of 6, 12 and 18mm, and the four stress intensity level. The probability distribution function of fatigue crack growth lives seems to follow the 3-parameter Wiubull and shows a slight dependence on specimen thickness and stress intensity level. The shape parameter, ${\alpha}$, does not show the dependency of thickness and stress intensity level, but the scale parameter, ${\beta}$, and location parameter, ${\upsilon}$, are decreased by increasing the specimen thickness and stress intensity level. The slope for the stress intensity level is larger than the specimen thickness.

  • PDF

균열형상의 강체함유물을 포함하는 무한체에 대한 균열선단 부근의 응력분포와 응력세기계수 (Stress intensity factor and stress distribution near crack tip for infinite body containing regid inclusion with crack shape)

  • 이강용;김종성
    • 대한기계학회논문집A
    • /
    • 제22권3호
    • /
    • pp.680-683
    • /
    • 1998
  • In case of the infinite body containing a rigid inclusion with line crack shape, stress intensity factor is determined and the relation between stress intensity factor and stress distribution near a crack tip is developed. Also, the relation between stress intensity factor and Kolosoff stress function is developed. Finally, these results are compared with those that the crack surface is under no traction.

금속 재료의 피로 균열 전파 속도(da/dN) 평가를 위한 변형율 확대 계수의 유효성 검토 (Evaluation of Fatigue Strain Intensity Factor on Fatigue Crack Propagation Rate (da/dN))

  • 유재환;최재강;손종동
    • 한국안전학회지
    • /
    • 제11권2호
    • /
    • pp.3-8
    • /
    • 1996
  • Fatigue fracture is the cyclic fracture phenomena at a very small local area near a crack tip. Therefore, the detailed quantitative experimental analysis about local cyclic strain distribution near a crack tip is prerequisite In order to make an effective parameter able to account for fatigue fracture problems. However, there are few reports on detailed quantitative experimental analysis of a local cyclic strain distribution near a crack tip, because of experimental difficulties. In this study, the distribution of local fatigue strains near a fatigue crack tip was in detail studied using by fine dot grid strain measurement method. From these results, a single parameter, which characterizes local fatigue strain field, was proposed. In addition, this parameter was applied to evaluate the fatigue crack propagation rate.

  • PDF

Double Cantilever Beam 방법을 이용한 다결정 알루미나의 Bridging 응력효과 해석 III. 다결정 알루미나의 Bridging 응력분포 (Analysis of bridging Stress Effect of Polycrystlline Aluminas Using Double Cantilever Beam Method)

  • 손기선;이성학;백성기
    • 한국세라믹학회지
    • /
    • 제33권5호
    • /
    • pp.602-615
    • /
    • 1996
  • The purpose of the present study is to investigate the microstructural effect on the R-curve behavior in three aluminas with different grain size distributions by analyzing the bridging stress distribution. The crack opening displacement (COD) according to the distance behind the stationary crack tip was measured using an in situ SEM fracture method. The measured COD values in the fine-grained alumina agreed well with Wiederhorn's sollution while they deviated from Wiederhorn's solution in the two coarse-grained aluminas because of the increase of the crack closure due to the grain interface bridging in the crack wake. A numerical fitting procedure was conducted by the introduction of the power-law relation and the current theoretical model together with the measured COD's in order to obtain the bridging stress distribution. The results indicated that the bridging stress function and the R-curve computed by the current model were consistent with those computed by the power-law relation providing a reliable evidence for the bridging stress analysis of the current model. The strain-softening exponent in the power-law relation n, was calculated to be in the range from 2 to 3 and was closely related to the grain size distribution. Thus it was concluded from the current theoretical model that the grain size distribution affected greatly the bridging stress distribution thereby resulting in the quantitative analysis of microfracture of polycrystalline aluminas through correlating the local-fracture-cont-rolling microstructure.

  • PDF

등가분포응력을 이용한 피로균열전파해석에 관한 연구 (A Study on the Fatigue Crack Propagation Analysis Using Equivalent Stress Distribution)

  • 김창욱;노인식;도관수
    • 대한조선학회논문집
    • /
    • 제39권2호
    • /
    • pp.61-68
    • /
    • 2002
  • K-a 관계가 동일하면, 선형파괴역학적 견지에서 균열개구 거동이 같다고 가정할 수 있다. 본 연구에서는 실제 구조물과 같은 K-a 관계를 주는 무한판 관통균열의 응력분포를 등가분포응력으로 정의한다. 실제 구조물과 동일한 K-a 관계가 구현되는 응력분포를 간단한 시험편에 작용시켜, 피로균열전파 해석을 수행하면 실제 구조요소의 피로전파수명 추정이 가능하다. 구조물에 대한 K-a 관계는 유한요소법 등의 이산화 수법 혹은 간이 추정법 등에 의하여 추정이 가능하다. 등가분포응력을 이용하여 유효 균열진전 음력을 구하는 방법의 타당성을 검토한다.

Effect of Specimen Thickness by Simulation of Probabilistic Fatigue Crack Growth

  • Kim, Seon-Jin
    • 한국해양공학회:학술대회논문집
    • /
    • 한국해양공학회 2001년도 추계학술대회 논문집
    • /
    • pp.232-237
    • /
    • 2001
  • The evaluation of specimen thickness effect of fatigue crack growth life by the simulation of probabilistic fatigue crack growth is presented. In this paper, the material resistance to fatigue crack growth is treated as a spatial stochastic process, which varies randomly on the crack surface. Using the previous experimental data, the non-Gaussian(eventually Weibull, in this report) random fields simulation method is applied. This method is useful to estimate the probability distribution of fatigue crack growth life and the variability due to specimen thickness by simulating material resistance to fatigue crack growth along a crack path.

  • PDF

단일 과대하중에 의한 균열지연거동에 관한 연구 (A Study on Crack Retardation Behavior by Single Overload)

  • 송삼홍;권윤기
    • 대한기계학회논문집
    • /
    • 제19권2호
    • /
    • pp.451-462
    • /
    • 1995
  • Single overload tests performed to examine the crack retardation behavior for the specimen thickness and overload ratios. Delayed crack length was tend to increase in small thickness and big overload ratio but was difference between delayed crack length and plastic zone size that expected in specimen thickness. So retardation behavior that estimated in plastic zone size, was not sufficient. Crack tip branching and striation distribution, secondary mechanisms that effected in retardation behavior, was examined by experiment and finite element analysis. Crack tip branching was affected by micro structure, and appeared the more complicatedly according to increasing damage by overload and decreasing crack driving force in base line stress level. And crack tip branching the branching angle decreased crack driving force in the crack tip. And a characteristic of the fractography on retardation zone was that striation distribution did not appear due to decreased crack driving force.

강의 피로균열지연거동에 미치는 과대하중의 영향과 통계적 변동에 관한 연구 (Influence of overload on the fatigue crack growth retardation and the statistical variation)

  • 김선진;남기우;김종훈;이창용;박은희;서상하
    • 한국해양공학회지
    • /
    • 제11권3호
    • /
    • pp.76-88
    • /
    • 1997
  • Constant .DELTA.K fatigue crack growth rate experiments were performed by applying an intermediate single and multiple overload for structural steel, SM45C. The purpose of the present study is to investigate the influence of multiple overloads at various stress intensity factor ranges and the effect of statistical variability of crack retardation behavior. The normalized delayed load cycle, delayed crack length and the minimum crack growth rate are increased with increasing baseline stress intensity factor range when the overload ratio and the number of overload application were constant. The crack retardation under low baseline stress intensity factor range increases by increasing the number of overload application, but the minimum crack growth rate decreases by increasing the number of overload application. A strong linear correlation exists between the minimum crack growth rate and the number of overload applications. And, it was observed that the variability in the crack growth retardation behavior are presented, the probability distribution functions of delayed load cycle, delayed crack length and crack growth life are 2-parameter Weibull. The coefficient of variation of delayed load cycle and delayed crack length for the number of 10 overload applications data are 14.8 and 9.2%, respectively.

  • PDF

피로균열 성장과정에 대한 평가방법의 영향 (Influence of Evaluation Methods for Fatigue Crack Growth Process)

  • 안철봉
    • 한국생산제조학회지
    • /
    • 제8권1호
    • /
    • pp.119-125
    • /
    • 1999
  • The distribution of fatigue crack growth rate is subjected to the measuring interval and calculated method of growth rate. In this paper, in order to establish the method of determining the distribution of fatigue crack growth rate, which ignores those influences, a series of fatigue crack growth experiments and measuring intervals of crack length calculated reasonable are presented. The main conclusions obtained are summarized as follows: 1) As a result of the ΔP constant test and ΔK constant test, it is thought that an approximate measuring interval of 0.3~0.7mm is reasonable, which allows for few errors and is little subjected to the calculated method of crack growth rate. 2) After generally comparing the error estimation by using the experimental data of CCT specimen with the error rating of the CT specimens, it is possible that the fatigue test has few errors within the measuring interval, ξ(Δa/W)=0.0067~0.017, regardless of the dimension of specimen geometry.

  • PDF