• 제목/요약/키워드: crack criterion factor

검색결과 67건 처리시간 0.022초

On the mixed-mode crack propagation in FGMs plates: comparison of different criteria

  • Nabil, Benamara;Abdelkader, Boulenouar;Miloud, Aminallah;Noureddine, Benseddiq
    • Structural Engineering and Mechanics
    • /
    • 제61권3호
    • /
    • pp.371-379
    • /
    • 2017
  • Modelling of a crack propagating through a finite element mesh under mixed mode conditions is of prime importance in fracture mechanics. In this paper, two crack growth criteria and the respective crack paths prediction in functionally graded materials (FGM) are compared. The maximum tangential stress criterion (${\sigma}_{\theta}-criterion$) and the minimum strain energy density criterion (S-criterion) are investigated using advanced finite element technique. Using Ansys Parametric Design Language (APDL), the variation continues in the material properties are incorporated into the model by specifying the material parameters at the centroid of each finite element. In this paper, the displacement extrapolation technique (DET) proposed for homogeneous materials is modified and investigated, to obtain the stress intensity factors (SIFs) at crack-tip in FGMs. Several examples are modeled to evaluate the accuracy and effectiveness of the combined procedure. The effect of the defects on the crack propagation in FGMs was highlighted.

최소 변형에너지 밀도 기준의 모호성과 최대 극소 변형에너지 밀도 기준 (Ambiguity of Minimum Strain Energy Density Criterion and Maximum Minimum Strain Energy Density Criterion)

  • 구재민
    • 대한기계학회논문집A
    • /
    • 제25권7호
    • /
    • pp.1155-1162
    • /
    • 2001
  • Sihs minimum strain energy density criterion(SED) often used in the mixed mode problem has the ambiguity of the choice of minimum values. In this paper, as the method to solve the problem of SED, maximum minimum strain energy density criterion is proposed that the crack propagates in the direction of having the maximum among the minimum values of modified strain energy density factor(MS), i.e., sign($\sigma$(sub)$\theta$).Smin.

기계적 체결부 균열의 피로균열성장에 관한 연구 (A Study on the Fatigue Crack Growth of Cracks in Mechanical Joints)

  • 허성필;양원호;정기현
    • 한국자동차공학회논문집
    • /
    • 제10권1호
    • /
    • pp.187-194
    • /
    • 2002
  • It has been reported that cracks in mechanical joints is generally under mixed-mode and there is critical inclined angle at which mode I stress intensity factor becomes maximum. The crack propagates in arbitrary direction and thus the prediction of crack growth path is needed to provide against crack propagation or examine safety. In order to evaluate the fatigue life of cracks in mechanical joints, horizontal crack normal to the applied load and located on minimum cross section is major concern but critical inclined crack must also be considered. In this paper mixed-mode fatigue crack growth test is performed far horizontal crack and critical inclined crack in mechanical joints. Fatigue crack growth path is predicted by maximum tangential stress criterion using stress intensity factor obtained from weight function method, and fatigue crack growth rates of horizontal and inclined crack are compared.

CED에 의한 계면굴절균열의 진전거동평가 (The Evaluation of the Kinked Interface Crack Behavior in Dissimilar Materials by CED)

  • 권오헌
    • 대한기계학회논문집A
    • /
    • 제21권3호
    • /
    • pp.414-422
    • /
    • 1997
  • The characteristics on the extension of the CED(Crack Energy Density) concept to the interface kinked crack problems in a dissimilar are examined. Each mode contributions of CED are found by symmetric and antisymmetric conponents and domain independent integrals. Finite element calculation is carried out to simulate the interface kinked crack growth on a bimaterial. The focus is the establishment of fracture criterion with CED and finding the orientation of crack extension. From the results, a prediction about the extension behavior of an interface kinked crack can be done. And we show that CED can be a parameter to indicate fracture criterion at an interface kinked crack.

Modified discontinuous deformation analysis for rock failure: Crack propagation

  • Chen, Yunjuan;Zhang, Xin;Zhu, Weishen;Wang, Wen
    • Geomechanics and Engineering
    • /
    • 제14권4호
    • /
    • pp.325-336
    • /
    • 2018
  • Deformation of rock masses is not only related to rock itself, but also related to discontinuities, the latter maybe greater. Study on crack propagation at discontinuities is important to reveal the damage law of rock masses. DDARF is a discontinuous deformation analysis method for rock failure and some modified algorithms are proposed in this study. Firstly, coupled modeling methods of AutoCAD-DDARF and ANSYS-DDARF are introduced, which could improve the modeling efficiency of DDARF compared to its original program. Secondly, a convergence criterion for automatically judging the computation equilibrium is established, it could overcome subjective drawbacks of ending one calculation by time steps. Lastly but not the least, relationship between the super relaxation factor and the calculation convergence is analyzed, and reasonable value range of the super relaxation factor is obtained. Based on these above modified programs, influences on crack propagation of joint angle, joint parameters and geo-stresses' side pressure are studied.

혼합모드(I+II)하에서 균열길이 변화에 따른 피로균열 전파 거동 (Behaviour of Fatigue Crack Propagation under Mixed Mode(I+II) with variation of Crack Length)

  • 정의효;허방수;권윤기;오택열
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2000년도 춘계학술대회논문집A
    • /
    • pp.182-187
    • /
    • 2000
  • The application of fracture mechanics have traditionally concentrated on cracks leaded by tensile stresses, and growing under an opening or mode I mechanism. However, many cases of failures occur from growth of cracks subjected to mixed mode loading. Several criteria have been proposed regarding the crack growth direction under mixed mode loadings. This paper is aimed at prediction of fatigue crack growth behaviour under mixed mode(I+II) in two dimensional branched type precrack. In this paper, the maximum tangential stress(MTS) criterion was used to predict crack growth direction. Not only experiment but also finite element analysis(FEA) was carried out. The theoretical predictions were compared with experimental results in this paper

  • PDF

랜덤하중에서의 균열전파속도 추정법에 관한 연구 (A Prediction of Crack Propagation Rate under Random Loading)

  • 표동근;안태환
    • 한국해양공학회지
    • /
    • 제8권2호
    • /
    • pp.115-123
    • /
    • 1994
  • Under variable amplitude loading conditions, retardation or accelerated condition of fatigue crack growth occurs with every cycle, Because fatigue crack growth behavior varied depend on load time history. The modeling of stress amplitude with storm loading acted to ships and offshore structures applied this paper. The crack closure behavior examine by recording the variation in load-strain relationship. By taking process mentioned above, fatigue crack growth rate, crack length, stress intensity factor, and crack closure stress intensity factor were obtained from the stress cycles of each type of storm ; A(6m), B(7m), C(8m), D(9m), E(11m) and F(15m) which was wave height. It showed that the good agreement with between the experiment results and simulation of storm loads. So this estimated method of crack propagtion rate gives a good criterion for the safe design of vessels and marine structure.

  • PDF

면외하중을 받는 상이한 직교 이방성 평면내의 평행균열 (Parallel Crack in Bonded Dissimilar Orthotropic Planes Under Out-of-Plane Loading)

  • 최성렬;권용수;채영석
    • 대한기계학회논문집
    • /
    • 제19권1호
    • /
    • pp.170-180
    • /
    • 1995
  • A parallel crack in bonded dissimilar orthotropic planes under out-of-plane loading is analyzed. The problem is formulated by Fourier integral transforms, and reduced to a pair of dual integral equations. By solving the integral equations, the asymptotic stress and displacement fields near the crack tip are determined in closed form, from which the stress intensity factor and energy release rate are obtained. Discontinuity in the stress intensity factor as the distance ratio h/a of the parallel crack approaches zero is found, while the energy releas rate is shown to be continuous at h/a = 0. This information can immediately be used to generate the stress intensity factor for the parallel crack near the interface. By employing "the maximum energy release rate criterion", it could be shown in the case of no existing crack initially that the parallel crack is formed far from the interface for the more compliant material, while it is formed close to the interface for the stiffer material. material.

2개의 성장 균열들의 상호작용에 관한 응력확대계수 해석 (Analysis of Stress Intensity Factors for Interacting Two Growing Cracks)

  • 박성완
    • 한국생산제조학회지
    • /
    • 제9권5호
    • /
    • pp.47-57
    • /
    • 2000
  • In this study, a fundamental approach to make clear the mechanism of the mutual interference and coalescence of stress fields in the vicinity of two crack tips on the process of their slow growth, using boundary element method. Automatic generation of quadratic discontinuous elements along both of the crack boundaries which can be defined by an arbitrary piece-wise straight geometry. The direction of the crack-extension increment is predicted by the maximum principal stress criterion, corrected to account for the discreteness of the crack extension. Along the computed direction, the crack is extended one increment. Automatic incremental crack-extension analysis with no remeshing, computation of the stress intensity factors by J-integral. Numerical stress intensity factors for two growing cracks in plane-homogeneous regions were determined.

  • PDF

혼합모드 피로문제에서의 최소 변형에너지 밀도기준의 적용 (An Application of Minimum Strain Energy Density Criterion in Mixed Mode Fatigue Problem)

  • 심규석;구재민
    • 한국안전학회지
    • /
    • 제17권2호
    • /
    • pp.1-7
    • /
    • 2002
  • In this paper, the maximum minimum strain energy density criterion was applied to the mixed mode fatigue test of A5052 H34 alloy. In this study result we can have seen that the authors stress intensity factor for the finite width specimen and method of determining testing load, based on the plastic zone size and the limited maximum stress intensity factor by ASTM STANDARD E-647-95, is useful.