• Title/Summary/Keyword: cover concrete

Search Result 579, Processing Time 0.026 seconds

A numerical method for evaluating fire performance of prestressed concrete T bridge girders

  • Zhang, Gang;Kodur, Venkatesh;Song, Chaojie;Hou, Wei;He, Shuanhai
    • Computers and Concrete
    • /
    • v.25 no.6
    • /
    • pp.497-507
    • /
    • 2020
  • This paper presents a numerical method for evaluating fire performance of prestressed concrete (PC) T shaped bridge girders under combined effect of structural loading and hydrocarbon fire exposure conditions. A numerical model, developed using the computer program ANSYS, is employed to investigate fire response of PC T shaped bridge girders by taking into consideration structural inherent parameters, namely; arrangement of prestressing strands with in the girder section, thickness of concrete cover over prestressing strands, effective degree of prestress and content of prestressing strands. Then, a sequential thermo-mechanical analysis is performed to predict cross sectional temperature followed by mechanical response of T shaped bridge girders. The validity of the numerical model is established by comparing temperatures, deflections and failure time generated from fire tests. Through numerical studies, it is shown that thickness of concrete cover and arrangement of prestressing strands in girder section have significant influence on the fire resistance of PC T shaped bridge girders. Increase in effective degree of prestress in strands with triangular shaped layout and content in prestressing strands can slow down the progression of deflections in PC T shaped bridge girder towards the final stages of fire exposure, to thereby preventing sudden collapse of the girder. Rate of deflection based failure criterion governs failure in PC T shaped bridge girders under most hydrocarbon fire exposure conditions. Structural inherent parameters incorporated into sectional configuration can significantly enhance fire resistance of PC bridge girders; thus mitigating fire induced collapse of these bridge girders.

A Study on Joint Position at Concrete Pavement with Box Culverts (박스 암거가 통과하는 콘크리트 포장의 줄눈 위치에 관한 연구)

  • Park, Joo-Young;Sohn, Dueck-Su;Lee, Jae-Hoon;Jeong, Jin-Hoon
    • International Journal of Highway Engineering
    • /
    • v.14 no.2
    • /
    • pp.45-53
    • /
    • 2012
  • Hollows are easily made and bearing capacity is lowered near underground structures of concrete pavement because of poor compaction and long term settlement of the ground. Distresses occur and lifespan is shortened because of larger stress induced by external loadings expected than that in the design. In this paper, the distresses of the concrete pavement slab over box culverts were investigated at the Korea Expressway Corporation(KEC) test road. The transverse cracking of the slabs over the culverts was compared between up and down lines with different soil cover depth. The box culvert without soil cover and concrete pavement were modeled and analyzed by the finite element method(FEM) to verify the transverse cracking at the test road. Wheel loading was applied after self weight of the pavement and temperature gradient of the concrete slab at Yeojoo, Gyeonggi where the test road is located were considered. Positions of maximum tensile stress and corresponding positions of the wheel loading were found for each loading combination. Joint position minimizing the maximum tensile stress was found and optimal slab length over the culverts with diverse size were suggested.

An Experimental Study on the Fire Behavior of Concrete Void Slab under Standard Fire with Loading Condition (표준화재 재하조건 콘크리트 중공슬래브의 피복두께에 따른 화재거동에 관한 실험적 연구)

  • Kim, Heung-Youl;Kim, Hyung-Jun;Cho, Beom-Yeon;Yeo, In-Hwan;Kwon, In-Kyu
    • Fire Science and Engineering
    • /
    • v.25 no.6
    • /
    • pp.64-72
    • /
    • 2011
  • The concrete void slab structure with the existing mushroom slab, is the structure that maximizes the advantages, while minimizing the weakness with removing useless body force of the concrete part, located on the center of the slab cross-section, which does not need to support the structural weight. In this research, a fire test is performed to analyze how the blaze behave according to the thickness of slab cover, with the practical span length of concrete void slab for the slab length 7.5 m. With this heating test, we assumed the uniform-load-model considering fixed loads and live loads, and chose the standard fire test condition. We measured the temperature changes and the deflection character according to the depth from the heat exposure side, and assessed the resisting capability according to the standard KS F 2257-1. The result comes out with the EPS model can secure about 2 hour fire-resisting-capability with 50 mm of cover depth.

Service Life Prediction and Cost Estimation of Repaired Concrete Structures Under Marine Environment (염해 환경 하 보수된 콘크리트 구조물의 사용수명 예측 및 보수 비용 평가)

  • Shim, Hyun Bo;Ann, Ki Yong
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.15 no.1
    • /
    • pp.226-234
    • /
    • 2011
  • The service life of concrete structures exposed to a marine environment can be extended by controlling the amount of chloride in cover concrete. Patching is one of the appropriate maintenance techniques for chloride contamination. Chloride-contaminated cover concrete is removed and replaced with sound one. It can provide less risk of corrosion of steel, so that the structure can be maintained for required service life. In this study, a quantitative assessment of the service life subjected to the chloride attack is proposed to determine the effective repair options such as repair depth, repair material and timing of repair. The Crank-Nicolson based finite difference formulation from Fick's second law is proposed to predict the profiles of chloride ion in a repaired concrete structure, considering ingress of chloride from outer and redistribution of residual chloride from the substrate concrete. Therefore, the repair application times and maintenance cost for the target service life can be estimated. Finally, the numerical examples are presented to ensure its applicability.

Analysis of Carbonation for Harbor Concrete Structure (항만 콘크리트 구조물에 대한 탄산화 해석)

  • Han, Sang-Hun;Park, Woo-Sun
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.20 no.6
    • /
    • pp.575-582
    • /
    • 2008
  • Carbonation is one of major factors influencing on the durability of concrete structure. This paper investigates the effect of carbonation on the soundness of harbor concrete structure and quantifies the influence of carbonation based on in-situation data tested at 369 points in 69 harbor facilities. The relationships between carbonation depth and cover depth, and between carbonation depth and compressive strength are studied and the failure probability of durability, that is the initiation probability of steel corrosion, is evaluated on the basis of reliability concept. The in-situation test results showed that the ratio of carbonation depth to cover depth was less than 0.2, and the carbonation depth increased with age. In most cases, the failure probability of durability by carbonation was less than 10%. Therefore, it can be concluded that the influence of carbonation on the durability of harbor concrete structure is smaller than other factors deteriorating the durability of harbor concrete structure.

Measurements and Data Interpretation for the Detection of Steel Bars and Delamination inside Concrete (콘크리트내의 철근 및 공동탐사를 위한 측정과 분석)

  • Rhim, Hong-Chul;Park, Ki-Joon;Lee, Soong-Jae
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.20 no.4
    • /
    • pp.305-313
    • /
    • 2000
  • To determine detection capabilities of locating steel bars and delamination inside concrete, commercially available nondestructive testing (NDT) equipments have been tested. The equipments include two radar systems and two electromagnetic method systems. The inclusions are a 19 mm diameter steel bar and 50 mm thick delamination embedded at different cover depths from the surface of concrete specimens. For the steel bar, attempts were made to determine the size of the bars by changing the diameter of the bars. A sample result of measuring horizontal spacing between doubly reinforced bars is presented in this paper. Experimental results on various measurement cases are discussed. Application of numerical modeling technique for the simulation of radar measurements and improved output display of radar measurements are also presented.

  • PDF

Analysis on the Field Measurements with the Construction of Cut and Cover Tunnel (복개 터널구조물의 현장 시공에 따른 계측 분석 사례)

  • 이석원;박시현;최순욱;배규진
    • Tunnel and Underground Space
    • /
    • v.13 no.2
    • /
    • pp.125-137
    • /
    • 2003
  • Field measurements were carried out in this study to investigate the behavior of cut and cover tunnel such as the distribution and the magnitude of the earth pressure during back fill process. Three kinds of measuring instruments, such as the earth pressure load cell, the concrete strain gauge and the reinforcing bar meter of embedded type in concrete structure were installed and measured. Earth pressure load cells measured the outside forces acting on the tunnel lining with radial directions. Three load cells were installed at the crown, the right and the left shoulder of the tunnel, respectively. Three sets of reinforcing bar meter were installed in the double reinforcements of the tunnel lining and their locations were the same with the position of the earth pressure load cells. Concrete strain gauge was installed only one site of the upper compressive part at the tunnel crown. Based on the measurements, the deformation and the earth pressure acting on the tunnel lining were investigated with the back fill process. Considerations on the validity of the field measurements were paid.

A Case Study on Deformation Characteristics of Concrete Face Rockfill Dam (콘크리트 표면차수벽형 석괴댐(CFRD)의 거동해석)

  • Kim, Hun;Chung, Kyu-Jung;Lee, Wang-Gon;Jang, Jung-Ryeol
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2003.03a
    • /
    • pp.111-116
    • /
    • 2003
  • Instrumentation system in Concrete Face Rockfill Dam(CFRD) can give special attention to the deformation characteristics of the rockfill and behavior of the concrete membrane during construction, reservoir filling and subsequent phase of operation. It also contains data about vertical and transversal compressibility moduli of the rockfill, deflections in the concrete slab, and draws comparisons with other concrete face rockfill dams of recent construction. In this paper, the internal deformation data from D dam monitored by means of hydrostatic settlements cells are analyzed. Observations cover the construction stage, reservoir filling and up to March 1991. The above method can be concluded D dam was well constructed and maintained.

  • PDF

Structural Behavior of Fire-Damaged Reinforced Concrete Beam with Normal Strength Concrete (화재 피해를 입은 일반 강도 철근콘크리트 휨부재의 구조 거동)

  • 이소진;신영수;이차돈;홍성걸
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2002.10a
    • /
    • pp.307-312
    • /
    • 2002
  • This paper deals with structural behavior of reinforced concrete beams under fire and fire damaged condition. The main purpose of this study is to investigate the structural behavior of the beams under high temperature condition and to evaluate the remaining strength of flexural members by exposure time to fire. For this purpose, twelve beam specimens are fabricated and experimented. Ten specimens are exposed to the fire for 1 and 2 hours and to the failure. After being cooled in room temperature, the specimens are loaded to the failure. The research result shows that the main variables of the test, concrete cover and exposure time to fire are much influenced on the structural behavior and the remaining strength.

  • PDF

Effect of Water-Cement Ratio and Aging on the Characteristics of Chloride Ions Diffusion in Concrete (물-시멘트비와 재령이 콘크리트의 염소이온 확산특성에 미치는 영향)

  • 배수호;정영수;김진영;하재담;심은철;임병탁
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2002.05a
    • /
    • pp.737-742
    • /
    • 2002
  • The chief factors for the penetration and diffusion of chloride ions in concrete are water-cement ratio(w/c), aging, thickness of cover concrete, chloride ions concentration of given environment, wet and dry conditions and etc. In this study, effect of w/c and aging on the characteristics of chloride ions diffusion in concrete were researched when environmental factors for the penetration and diffusion of chloride ions were constant. For this purpose, the voltages passing through the diffusion cell were measured by using accelerated test method using potential difference, and then diffusion coefficients of chloride ions by using Andrade's method were estimated for 44%, 49.5% and 55% of w/c, respectively. As a result, correlation among diffusion coefficients of chloride ions, w/c and aging were concluded through multiple regression model.

  • PDF