• 제목/요약/키워드: coupling stiffness

검색결과 283건 처리시간 0.023초

연성강성 효과를 고려한 회전하는 다중 블레이드 시스템의 굽힘진동 해석 (Bending Vibration Analysis of Rotating Multi-blade Systems Considering the Coupling Stiffness Effect)

  • 임하성;권성훈;유홍희
    • 한국소음진동공학회논문집
    • /
    • 제16권9호
    • /
    • pp.912-918
    • /
    • 2006
  • A modeling method for the vibration analysis of rotating multi-blade systems considering the coupling stiffness effect is presented in this paper. Blades are assumed as cantilever beams and the coupling stiffness effect originates from disc or shroud between blades. As the angular speed, hub radius ratio, and the coupling stiffness vary, the natural frequencies of the system vary. Numerical results show that the coupling stiffness is very important to estimate the natural frequencies. Along with the natural frequencies, associated mode shapes, critical angular speed, and critical hub radius ratio are obtained through the analysis.

연성강성 효과를 고려한 회전하는 다중 블레이드 시스템의 굽힘진동 해석 (Bending Vibration Analysis of Rotating Multi-blade Systems Considering the Coupling Stiffness Effect)

  • 임하성;권성훈;유홍희
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2006년도 춘계학술대회논문집
    • /
    • pp.1354-1359
    • /
    • 2006
  • A modeling method for the vibration analysis of rotating multi-blade systems considering the coupling stiffness effect is presented in this paper. Blades are assumed as cantilever beams and the coupling stiffness effect originates from disc or shroud between blades. As the angular speed, hub radius ratio, and the coupling stiffness vary, the natural frequencies of the system vary. Numerical results show that the coupling stiffness is very important to estimate the natural frequencies. Along with the natural frequencies, associated mode shapes, critical angular speed, and critical hub radius ratio are obtained through the analysis.

  • PDF

곡률 커플링 접촉각에 따른 접촉 강성 및 굽힘 강성해석 (Analysis of Contact Stiffness and Bending Stiffness according to Contact Angle of Curvic Coupling)

  • 유용훈;조용주;이동현;김영철
    • Tribology and Lubricants
    • /
    • 제34권1호
    • /
    • pp.23-32
    • /
    • 2018
  • Coupling is a mechanical component that transmits rotational force by connecting two shafts. Curvic coupling is widely used in high-performance systems because of its excellent power transmission efficiency and easy machining. However, coupling applications change dynamic behavior by reducing the stiffness of an entire system. Contact surface stiffness is an important parameter that determines the dynamic behavior of a system. In addition, the roughness profile of a contact surface is the most important parameter for obtaining contact stiffness. In this study, we theoretically establish the process of contact and bending stiffness analysis by considering the rough surface contact at Curvic coupling. Surface roughness parameters are obtained from Nayak's random process, and the normal contact stiffness of a contact surface is calculated using the Greenwood and Williamson model in the elastic region and the Jackson and Green model in the elastic-plastic region. The shape of the Curvic coupling contact surface is obtained by modeling a machined shape through an actual machining tool. Based on this modeling, we find the maximum number of gear teeth that can be machined according to the contact angle. Curvic coupling stiffness is calculated by considering the contact angle, and the calculation process is divided into stick and slip conditions. Based on this process, we investigate the stiffness characteristics according to the contact angle.

유체감쇠 커플링의 동특성에 관한 이론적 연구(I) (A Theoretical Study on the Dynamic Characteristics of Damping Flexible Coupling(I))

  • 김종수;제양규;정재현;전효중
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제18권1호
    • /
    • pp.11-22
    • /
    • 1994
  • The present works are the theoretical results of the study to develope a damping flexible coupling which has a high performance of control for the torsional vibrations of power shafts in a large machinery. It is established the analysis scheme of the multiple-leaf spring, to obtain the static coefficient of stiffness of the coupling. Also, the dynamic coefficient of stiffness and the damping coefficient of the coupling are indentified through the flow analysis for a induced flow of working fluid by the deflection of multiple-leaf springs. This paper dealt with damping contributions by the friction between each plate of the multiple-leaf spring. In this paper, it is found that the dynamic characteristics of the damping flexible coupling are strongly dependent on the stiffness and the number of the multiple-leaf spring, and also vary with the viscosity of working fluid and the vibration speed of the inner star.

  • PDF

공작기계 베어링 결합부의 전산 모델링 (Computational Modeling of the Bearing Coupling Section of Machine Tools)

  • 김현명;서재우;박형욱
    • 한국정밀공학회지
    • /
    • 제29권10호
    • /
    • pp.1050-1055
    • /
    • 2012
  • The bearing coupling section of machine tools is the most important factor to determine their static/dynamic stiffness. To ensure the proper performance of machine tools, the static/dynamic stiffness of the rotating system has to be predicted on the design stage. Various parameters of the bearing coupling section, such as the spring element, node number and preload influence the characteristics of rotating systems. This study focuses on the prediction of the static and dynamic stiffness of the rotating system with the bearing coupling section using the finite element (FE) model. MATRIX 27 in ANSYS has been adopted to describe the bearing coupling section of machine tools because the MATRIX 27 can describe the bearing coupling section close to the real object and is applicable to various machine tools. The FE model of the bearing couple section which has the sixteen node using MATRIX 27 was constructed. Comparisons between finite element method (FEM) predictions and experimental results were performed in terms of the static and dynamic stiffness.

Semi-Singularity in Stiffness Generation of an Anthropomorphic Robot

  • Kim, Sungbok;Sungho Moon;Cho, Doo-San
    • 융합신호처리학회 학술대회논문집
    • /
    • 한국신호처리시스템학회 2000년도 하계종합학술대회논문집
    • /
    • pp.113-116
    • /
    • 2000
  • This paper analyzes the singularity of an anthropomorphic robot associated with joint and operational stiffness generation from muscle stiffness. The singularity analysis is made simply based on the signs of the actual and the desired coupling joint stiffness. First, the relationships of the muscle stiffness and the actual joint stiffness, and the operational stiffness and the desired joint stiffness are examined. Second, according to the sign restriction on the actual coupling joint stiffness, the operational space is divided into the semi-singular(SS), the regular(R), and the semi-regular(SR) regions. Third, from the sign comparison of tile actual and the desired coupling joint stiffness, the sufficient condition for the semi-singularity in operational stiffness generation is derived. The limitation on the allowable operational stiffness when a task point belongs to SS, R, and SR regions is also discussed. Simulation results are given.

  • PDF

유체감쇠 커플링의 동특성에 관한 실험적 연구(II) (An Experimental Study on the Dynamic Characteristics of Damping Flexible Coupling( II ))

  • 김종수;제양규;정재현;전효중
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제18권1호
    • /
    • pp.23-31
    • /
    • 1994
  • The present works are the experimental results of the study to develope a damping flexible coupling which has a high performance of control for the torsional vibrations of power shafts in a large machinery. The damping flexible coupling is manufactured and is compared for dynamic characteristics with other type coupling which is the Geislinger coupling. The static coefficient of stiffness and the damping coefficient allows the control of excitation frequency through a cam driver. The experimental results obtained from the two couplings are compared with the theoretically results.

  • PDF

보강상세에 따른 특수전단벽 연결보의 내진성능 (Seismic Performance of Special Reinforced Concrete Coupling Beams with Different Reinforcement Details)

  • 천영수;박지영
    • 토지주택연구
    • /
    • 제6권1호
    • /
    • pp.21-29
    • /
    • 2015
  • 연결보는 지진하중에 효과적으로 저항하기 위하여 적절한 강도, 강성, 변형능력을 지녀야 한다. 특히 스팬-춤 비가 2.0 이하인 대각선다발철근을 갖는 특수전단벽 연결보는 일반 연결보보다 더 높은 강도, 강성, 연성능력을 갖게 되나 대각선다발철근 상세는 시공에 큰 어려움이 발생한다. 본 연구에서는 이러한 문제에 대한 해결방안의 하나로서 대각선다발철근 상세를 대체하기 위한 대안상세들이 실험적으로 연구되었다. 실험결과, 앵글형태로 보강된 SA실험체가 대각방향 보강근을 완전히 제거한 SB시리즈의 실험체와 비교하여 더 안정된 거동을 보였으며, 기존의 대각선다발철근상세를 갖는 CA실험체와 비교하여 유사한 강도, 강성, 에너지소산능력과 변형능력(drift)을 나타내었다.

마그네틱 커플링을 장착한 축계의 동적해석(I) (Dynamic analysis of spindle system with magnetic coupling(1))

  • Kim, S.K.;Lee, S.J.;Lee, J.M.
    • 한국정밀공학회지
    • /
    • 제11권4호
    • /
    • pp.99-105
    • /
    • 1994
  • In this study, the transverse and the torsional vibration analyses of a precision dynamic drive system with the magnetic coupling are accomplished. The force of the magnetic coupling is regarded as an equivalent transverse stiffness, which has a nonlinearity as a function of the gap and the eccentricity between a driver and a follower. Such an equivalent stiffness is calculated by and determined by the physical law and the calculated equivalent stiffness is modelled as the truss element. The form of the torque function transmitted through the magnetic coupling is a sinusoidal and such an equivalent angular stiffness, which represents the torque between a driver and a follower, is modelled as a nonlinear spring. The main spindle connected to a follower is assumed to a rigid body. And then finally we have the nonlinear partial differential equation with respect to the angular displacements. Through the procedure mentioned above, we accomplish the results of the torsional vibration analysis in a spindle system with the magnetic coupling.

  • PDF

탄소성 변형을 고려한 타이로드 고정 회전체의 동역학 해석 (Dynamic Analysis of Tie-rod-fastened Rotor Considering Elastoplastic Deformation)

  • 서동찬;김경희;이도훈;이보라;서준호
    • Tribology and Lubricants
    • /
    • 제40권1호
    • /
    • pp.8-16
    • /
    • 2024
  • This study conducts numerical modeling and eigen-analysis of a rod-fastened rotor, which is mainly used in aircraft gas turbine engines in which multiple disks are in contact through curvic coupling. Nayak's theory is adopted to calculate surface parameters measured from the tooth profile of the curvic coupling gear. Surface parameters are important design parameters for predicting the stiffness between contact surfaces. Based on the calculated surface parameters, elastoplastic contact analysis is performed according to the interference between two surfaces based on the Greenwood-Williamson model. The equivalent bending stiffness is predicted based on the shape and elastoplastic contact stiffness of the curvic coupling. An equation of motion of the rod-fastened rotor, including the bending stiffness of the curvic coupling, is developed. Methods for applying the bending stiffness of a curvic coupling to the equation of motion and for modeling the equation of motion of a rotor that includes both inner and outer rotors are introduced. Rotordynamic analysis is performed through one-dimensional finite element analysis, and each element is modeled based on Timoshenko beam theory. Changes in bending stiffness and the resultant critical speed change in accordance with the rod fastening force are predicted, and the corresponding mode shapes are analyzed.