• Title/Summary/Keyword: coupling circuit

Search Result 474, Processing Time 0.021 seconds

Improving Sensitivity of SAW-based Pressure Sensor with Metal Ground Shielding over Cavity

  • Lee, Kee-Keun;Hwang, Jeang-Su;Wang, Wen;Kim, Geun-Young;Yang, Sang-Sik
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.12 no.3 s.36
    • /
    • pp.267-274
    • /
    • 2005
  • This paper presents the fabrication of surface acoustic wave (SAW)-based pressure sensor for long-term stable mechanical compression force measurement. SAW pressure sensor has many attractive features for practical pressure measurement: no battery requirement, wireless pressure detection especially at hazardous environments, and easy other functionality integrations such as temperature, humidity, and RFID. A $41^{\circ}$ YX $LiNbO_3$ piezoelectric substrate was used because of its high SAW propagation velocity and large values of electromechanical coupling factors $K^2$. A silicon substrate with $\~200{\mu}m$ deep cavity was bonded to the diaphragm with epoxy, in which gold was covered all over the inner cavity in order to confine electromagnetic energy inside the sensor, and provide good isolation of the device from its environment. The reflection coefficient $S_{11}$ was measured using network analyzer. High S/N ratio, sharp reflected peaks, and clear separation between the peaks were observed. As a mechanical compression force was applied to the diaphragm from top with extremely sharp object, the diaphragm was bended, resulting in the phase shifts of the reflected peaks. The phase shifts were modulated depending on the amount of applied mechanical compression force. The measured $S_{11}$ results showed a good agreement with simulated results obtained from equivalent admittance circuit modeling.

  • PDF

An X-band Oscillator Using a New Hairpin Resonator (새로운 헤어핀 공진기를 이용한 X 밴드 발진기)

  • Seo, Sung-Won;Jeong, Jin-Ho;Park, Chan-Hyeong
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.19 no.2
    • /
    • pp.250-256
    • /
    • 2008
  • In this paper, an X-band oscillator is presented using a new miniaturized microstrip hairpin resonator. The newly designed hairpin resonator on the microstrip line employs the spiral structure, which shows a higher loaded quality factor and the 50 % reduced circuit area compared to the conventional one at 9.2 GHz. The oscillator using proposed resonator shows the output power of 10.87 dBm, the second harmonic suppression of 41.99 dBc, and the phase noise performance of -101.49 dBc/Hz at 100 kHz offset, which is better than the conventional resonator oscillator by 6.17 dB.

CRLH Rectangular Waveguide with Balanced Condition above Cut-off Frequency (차단 주파수 이상에서 평형 조건을 만족하는 CRLH 직각 도파관)

  • Kim, Dong-Jin;Lee, Jeong-Hae
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.22 no.9
    • /
    • pp.912-918
    • /
    • 2011
  • In this paper, a composite right-/left-handed(CRLH) rectangular waveguide satisfying a balanced condition above the cut-off frequency is presented. The proposed structure consists of one shorted stub and two twisted H-plane irises which produce an effectively negative permeability and permittivity, respectively. The CRLH structure can independently control the series and shunt resonance frequencies of a CRLH transmission line which determine the left-handed(LH) and right-handed(RH) bands due to a minimized coupling between a shorted stub and twisted H-plane irises. Thus, the design of the CRLH waveguide satisfying a balanced condition is possible. To analyze the CRLH structure, a crossly connected equivalent circuit is derived. The simulated and measured results confirm that the proposed CRLH waveguide has a transmission property without a band gap among the LH and RH bands.

Warpage Improvement of PCB with Material Properties Variation of Core (코어 물성 변화에 따른 인쇄회로기판의 warpage 개선)

  • Yoon Il-Soung
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.13 no.2 s.39
    • /
    • pp.1-7
    • /
    • 2006
  • In this paper, warpage magnitude and shape of printed-circuit board in case that properties of core and thickness of solder resist are varied are investigated. The cause of warpage is coefficient of thermal expansion differences of stacked materials. Therefore, we need small difference of coefficient of thermal expansion that laminated material, and need to decrease asymmetric of top side and bottom side in structure shape. Also, we can control occurrence of warpage heightening hardness of core in laminated material. Composite material that make core are exploited in connection with the structural bending twisting coupling resulting from directional properties of fiber reinforced composite materials and from ply stacking sequence. If we use such characteristic, we can control warpage with change of material properties. In this paper, warpage of two layer stacked chip scale package is investigated, and evaluate improvement result using an experiment and finite element method tool.

  • PDF

Analysis of High-Speed Pulse Propagation on Arbitrarily Interconnected Transmission Lines by an Efficient Node Discretization Technique (효율적인 노드분할법을 통한 임의 결선된 전송선로상의 고속 펄스 전송 해석)

  • 전상재;박의준
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.40 no.1
    • /
    • pp.37-46
    • /
    • 2003
  • The transient responses on arbitrarily interconnected digital transmission lines are analyzed by an efficient node discretization technique. Since the proposed node discretization technique offers an efficient means to discretize transmission lines, the transient waveform at any position on the arbitrarily interconnected lines is easily predicted. Dispersive microstrip multiconductor transmission lines arbitrarily connected are analized for generality. The derivation of frequency-dependent equivalent circuit elements of coupled transmission lines have been carried out by the spectral domain approach(SDA). The effects of variations of excited pulse width on the crosstalks of the high-speed microstrip coupled-lines are also investigated. It has been well known that the crosstalk spike level is monotonously increased when the coupling length and effective permittivity of substrate are increased. In this paper, it is found that the variations of crosstalk level are not further monotonous as shortening the exciting pulse width toward several picosecond. The results are verified by the generalized S-parameter technique.

A 3 dB Coupler for Double Sided Printed Circuit Boards (이층 기판용 3 dB 커플러)

  • Lee, Dong-Ho
    • Journal of IKEEE
    • /
    • v.18 no.4
    • /
    • pp.559-565
    • /
    • 2014
  • A 3 dB coupler has been designed and implemented using the most commonly used double-sided FR4 boards. The coupling and the bandwidth of the coupler are enhanced with the enlarged overlapped area of the coupler. Major design parameters are plotted as a design guide and the parameters are verified by simulation and measurement. The size of the manufactured coupler is $30{\times}14mm^2$. Its measured insertion loss and phase difference are 0.6 dB and $90.5^{\circ}$ at center frequency of 2.5 GHz, respectively. The operating frequency range is 1.72 GHz to 3.08 GHz for $3.6{\pm}0.5dB$ insertion loss. The coupler has the performance similar to that of conventional Lange coupler, and implementation of the coupler is easy and cheap with wide metal width and spacing and no additional wire bonding process.

Metamaterial CRLH Structure-based Balun for Common-Mode Current Indicator

  • Kahng, Sungtek;Lee, Jinil;Kim, Koon-Tae;Kim, Hyeong-Seok
    • Journal of Electrical Engineering and Technology
    • /
    • v.9 no.1
    • /
    • pp.301-306
    • /
    • 2014
  • We proposed a new PCB-type 'common-mode current($I_c$) and differential-mode current($I_d$) detector' working for fast detection of $I_c$ and $I_d$ from the differential-mode signaling, with miniaturization effect and possibility of cheaper fabrication. In order to realize this device, we suggest a branch-line-coupler balun having a composite right- and left-handed(CRLH) one-layer microstrip phase-shifting line as compact as roughly ${\lambda}_g/14$. The presented balun obviously is different from the conventional bent-&-folded delay lines or slits on the ground for coupling the lines on the top and bottom dielectrics. As we connect the suggested balun output ports of the differential-mode signal lines via the through-port named U and coupled-port named L, $I_c$ and $I_d$ will appear at port ${\Delta}$ and port ${\Sigma}$ of the present device, in order. The validity of the design scheme is verified by the circuit-and numerical electromagnetic analyses, and the dispersion curve proving the metamaterial characteristics of the geometry. Besides, the examples of the $I_c$ and $I_d$ indicator are observed as the even and odd modes in differential-mode signal feeding. Also, the proposed device is shown to be very compact, compared with the conventional structure.

Development of Retinal Prosthesis Module for Fully Implantable Retinal Prosthesis (완전삽입형 인공망막 구현을 위한 인공망막모듈 개발)

  • Lee, Kang-Wook;Kaiho, Yoshiyuki;Fukushima, Takafumi;Tanaka, Tetsu;Koyanagi, Mitsumasa
    • Journal of Biomedical Engineering Research
    • /
    • v.31 no.4
    • /
    • pp.292-301
    • /
    • 2010
  • To restore visual sensation of blind patients, we have proposed a fully implantable retinal prosthesis comprising an three dimensionally (3D) stacked retinal chip for transforming optical signal to electrical signal, a flexible cable with stimulus electrode array for stimulating retina cells, and coupling coils for power transmission. The 3D stacked retinal chip is consisted of several LSI chips such as photodetector, signal processing circuit, and stimulus current generator. They are vertically stacked and electrically connected using 3D integration technology. Our retinal prosthesis has a small size and lightweight with high resolution, therefore it could increase the patients` quality of life (QOL). For realizing the fully implantable retinal prosthesis, we developed a retinal prosthesis module comprising a retinal prosthesis chip and a flexible cable with stimulus electrode array for generating optimal stimulus current. In this study, we used a 2D retinal chip as a prototype retinal prosthesis chip. We fabricated the polymide-based flexible cable of $20{\mu}m$ thickness where 16 channels Pt stimulus electrode array was formed in the cable. Pt electrode has an impedance of $9.9k{\Omega}$ at 400Hz frequency. The retinal prosthesis chip was mounted on the flexible cable by an epoxy and electrically connected by Au wire. The retinal prosthesis chip was cappted by a silicone to pretect from corrosive environments in an eyeball. Then, the fabricated retinal prosthesis module was implanted into an eyeball of a rabbit. We successfully recorded electrically evoked potential (EEP) elicited from the rabbit brain by the current stimulation supplied from the implanted retinal prosthesis module. EEP amplitude was increased linearly with illumination intensity and irradiation time of incident light. The retinal prosthesis chip was well functioned after implanting into the eyeball of the rabbit.

Development and Application of IoT-based Contactless Ultraosonic System (IoT 기반 비접촉 초음파 측정 시스템 개발 및 적용)

  • Kim, Jihwan;Hong, Jinyoung;Kim, Rrulri;Woo, Ukyong;Choi, Hajin
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.24 no.3
    • /
    • pp.70-79
    • /
    • 2020
  • The main objective of this research to develop an IoT based wireless contactless ultrasonic system (ICUS) and its application to concrete structure. The developed system consists of 16 mems, 2Mhz digitizer, amplifying circuit, FPGA, and wifi module, enabling to measure leaky surface waves from concrete specimens without physical coupling process and wires. Multi-channel analysis is performed to improve the accuracy of data analysis, and the velocity of leaky surface waves and acoustics are derived. Field inspection of railroad concrete sleepers is conducted to evaluate the performance of the system and to compare the results with conventional ultrasonic pulse velocity (UPV). As a result of the field inspection, UPV was limited to evaluate damages. This is because crack pattern of railroad sleepers is parallel to ultrasonic ray path and accessibility of the railroad at the field is disadvantageous to contact-based UPV. On the other hand, ICUS possibly detect the damages as reduction of dynamic modulus by up to 59% compared to non-damaged specimen.

A Study on Coil Misalignment in a 3-Coil Magnetic Resonance Wireless Power Transmission System of a Electric Vehicle (전기자동차의 3-코일 자기공진방식 무선전력전송 시스템에서 코일의 비 정렬에 관한 연구)

  • Hwang, In-Gab
    • The Journal of Korea Institute of Information, Electronics, and Communication Technology
    • /
    • v.14 no.1
    • /
    • pp.48-55
    • /
    • 2021
  • The 3-coil magnetic resonance wireless power transmission system was analyzed using an equivalent circuit model, and the |S21| of the system was expressed as the equation of the Q of the three coils, the coupling coefficient k between the transmitting coil and the relay coil, the relay coil and the receiving coil. It is suggested that the maximum efficiency can be obtained when the relay coil is located in the center of the transmitting and the receiving coil. When the distance between the transmitting and the receiving coil is 30 cm and the two coils are aligned, maximum efficiency of 9 % is obtained with the relay coil centered between the coils. If the transmitting coil and the receiving coil are misaligned during a wireless charging of an electric vehicle, the efficiency is expected to decrease significantly compared to the aligned case. It is expected that the efficiency can be increased by using a relay coil and by rotating the coil.