• 제목/요약/키워드: coupling beams

검색결과 188건 처리시간 0.028초

Shear mechanism of steel fiber reinforced concrete deep coupling beams

  • Li, Kou;Zhao, Jun;Ren, Wenbo
    • Structural Engineering and Mechanics
    • /
    • 제73권2호
    • /
    • pp.143-152
    • /
    • 2020
  • Deep coupling beams are more prone to suffer brittle shear failure. The addition of steel fibers to seismic members such as coupling beams can improve their shear performance and ductility. Based on the test results of steel fiber reinforced concrete(SFRC) coupling beams with span-to-depth ratio between 1.5 and 2.5 under lateral reverse cyclic load, the shear mechanism were analyzed by using strut-and-tie model theory, and the effects of the span-to-depth ratio, compressive strength and volume fraction of steel fiber on shear strengths were also discussed. A simplified calculation method to predict the shear capacity of SFRC deep coupling beams was proposed. The results show that the shear force is mainly transmitted by a strut-and-tie mechanism composed of three types of inclined concrete struts, vertical reinforcement ties and nodes. The influence of span-to-depth ratio on shear capacity is mainly due to the change of inclination angle of main inclined struts. The increasing of concrete compressive strength or volume fraction of steel fiber can improve the shear capacity of SFRC deep coupling beams mainly by enhancing the bearing capacity of compressive struts or tensile strength of the vertical tie. The proposed calculation method is verified using experimental data, and comparative results show that the prediction values agree well with the test ones.

Effects of Matrix Ductility on the Shear Performance of Precast Reinforced HPFRCC Coupling Beams

  • Yun Hyun-Do;Kim Sun-Woo;Jeon Esther;Park Wan Shin
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 2005년도 추계 학술발표회 제17권2호
    • /
    • pp.53-56
    • /
    • 2005
  • This paper investigates the effect of ductile deformation behavior of high performance hybrid fiber-reinforced cement composites (HPHFRCCs) on the shear behavior of coupling beams to lateral load reversals. The matrix ductility and the reinforcement layout were the main variables of the tests. Three short coupling beams with two different reinforcement arrangements and matrixes were tested. They were subjected to cyclic loading by a suitable experimental setup. All specimens were characterized by a shear span-depth ratio of 1.0. The reinforcement layouts consisted of a classical scheme and diagonal scheme without confining ties. The effects of matrix ductility on deflections, strains, crack widths, crack patterns, failure modes, and ultimate shear load of coupling beams have been examined. The combination of a ductile cementitious matrix and steel reinforcement is found to result in improved energy dissipation capacity, simplification of reinforcement details, and damage-tolerant inelastic deformation behavior. Test results showed that the HPFRCC coupling beams behaved better than normal reinforced concrete control beams. These results were produced by HPHFRCC's tensile deformation capacity, damage tolerance and tensile strength.

  • PDF

묶음 대각철근을 갖는 세장한 철근콘크리트 연결보의 이력거동 (Cyclic Behavior of Slender Reinforced Concrete Coupling Beams with Bundled Diagonal Reinforcement)

  • 한상환;유경환;이기학;신명수
    • 콘크리트학회논문집
    • /
    • 제27권6호
    • /
    • pp.661-668
    • /
    • 2015
  • 병렬전단벽시스템은 횡력저항에 있어서 효율적인 구조시스템이지만, 각 독립벽체를 연결하는 연결보의 복잡한 철근상세로 인해 시공상의 어려움이 있다. ACI-318에서는 개선된 철근상세를 제안했지만, 이 또한 과도한 횡보강근으로 인해 대각철근의 중심부의 철근 배근 혼잡으로 인해 현장 적용에 어려움이 따른다. 본 연구에서는 프리캐스트를 통하여 철근 배근 오차 및 콘크리트 품질 등의 저하를 줄이고 ACI 318-11의 개선된 상세에 따른 기준 실험체와 일반대각철근을 묶음대각철근으로 대체한 철근콘크리트 연결보의 이력거동을 비교 평가하였다. 그 결과, 묶음대각철근을 적용한 실험체는 현행기준에 따른 연결보와 비교하여 유사한 이력거동을 나타냈고, 더 우수한 에너지소산능력을 나타냈다. 묶음대각철근을 적용한 철근콘크리트 연결보가 현행기준에 따르는 연결보를 대체하여 현장적용이 가능할 것으로 판단된다.

벽식구조 아파트에서 전단벽 연결보의 구조적거동 (The Structural Behavior of Reinforced Concrete R/C Couplinging Beams in Wall-Dominant System)

  • 장극관;천영수;서대원
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 2001년도 봄 학술발표회 논문집
    • /
    • pp.411-416
    • /
    • 2001
  • Preliminary experimental results are reported on the response of reversed T type linking reinforced concrete shear wall. Different layouts of coupling beams were tested and stiffness degradation and energy dissipation of coupling beams were evaluated. Diagonally reinforced coupling beams with slab showed larger ductility and larger amount of energy absorption to be attained compared with conventionally reinforced concrete coupled beams.

  • PDF

Nonlinear modeling parameters of RC coupling beams in a coupled wall system

  • Gwon, Seongwoo;Shin, Myoungsu;Pimentel, Benjamin;Lee, Deokjung
    • Earthquakes and Structures
    • /
    • 제7권5호
    • /
    • pp.817-842
    • /
    • 2014
  • ASCE/SEI 41-13 provides modeling parameters and numerical acceptance criteria for various types of members that are useful for evaluating the seismic performance of reinforced concrete (RC) building structures. To accurately evaluate the global performance of a coupled wall system, it is crucial to first properly define the component behaviors (i.e., force-displacement relationships of shear walls and coupling beams). However, only a few studies have investigated on the modeling of RC coupling beams subjected to earthquake loading to date. The main objective of this study is to assess the reliability of ASCE 41-13 modeling parameters specified for RC coupling beams with various design details, based on a database compiling almost all coupling beam tests available worldwide. Several recently developed coupling beam models are also reviewed. Finally, a rational method is proposed for determining the chord yield rotation of RC coupling beams.

묶음 대각철근과 고성능 섬유보강 시멘트 복합체를 적용한 세장한 프리캐스트 연결보의 이력거동 평가 (Cyclic Behavior of Precast Slender Coupling Beams with Bundled Diagonally Reinforcement and High-Performance Fiber Reinforced Cementitious Composite(HPFRCC))

  • 한상환;유경환;강동훈;이기학;신명수
    • 한국지진공학회논문집
    • /
    • 제19권2호
    • /
    • pp.55-62
    • /
    • 2015
  • Shear wall systems behave as individual wall because of openings like window and elevator cage. When coupling beams are installed in shear walls, they will have high strength and stiffness so that be less damaged by lateral loads like earthquake. However, coupling beam is difficult construction method. And arranging reinforcement of slender coupling beams are especially hard. It is because the details of coupling beam provided by ACI 318 are complex. In this paper, experiments were conducted using coupling beams with 3.5 aspect ratio to improve the details of slender coupling beams provided by ACI 318. Two specimens were proposed for this study. One specimen applied with bundled diagonally reinforcement only. Another specimen applied both bundled diagonally reinforcement and High-Performance Fiber Reinforced Cementitious Composite (HPFRCC) so that coupling beams have half of transverse reinforcement. All specimen were compared with a coupling beam designed according to ACI 318 and were evaluated with hysteretic behaviors. Test results showed that the performance of two specimen suggested in this study were similar to that of coupling beam designed according to current criteria. And it was considered that simplification of the details of reinforcement would be available if transverse reinforcement was reduced by using bundled diagonally reinforcement and HPFRCC.

보강상세에 따른 특수전단벽 연결보의 내진성능 (Seismic Performance of Special Reinforced Concrete Coupling Beams with Different Reinforcement Details)

  • 천영수;박지영
    • 토지주택연구
    • /
    • 제6권1호
    • /
    • pp.21-29
    • /
    • 2015
  • 연결보는 지진하중에 효과적으로 저항하기 위하여 적절한 강도, 강성, 변형능력을 지녀야 한다. 특히 스팬-춤 비가 2.0 이하인 대각선다발철근을 갖는 특수전단벽 연결보는 일반 연결보보다 더 높은 강도, 강성, 연성능력을 갖게 되나 대각선다발철근 상세는 시공에 큰 어려움이 발생한다. 본 연구에서는 이러한 문제에 대한 해결방안의 하나로서 대각선다발철근 상세를 대체하기 위한 대안상세들이 실험적으로 연구되었다. 실험결과, 앵글형태로 보강된 SA실험체가 대각방향 보강근을 완전히 제거한 SB시리즈의 실험체와 비교하여 더 안정된 거동을 보였으며, 기존의 대각선다발철근상세를 갖는 CA실험체와 비교하여 유사한 강도, 강성, 에너지소산능력과 변형능력(drift)을 나타내었다.

Nonlinear behavior of deep reinforced concrete coupling beams

  • Zhao, Z.Z.;Kwan, A.K.H.
    • Structural Engineering and Mechanics
    • /
    • 제15권2호
    • /
    • pp.181-198
    • /
    • 2003
  • Six large scale models of conventionally reinforced concrete coupling beams with span/depth ratios ranging from 1.17 to 2.00 were tested under monotonically applied shear loads to study their nonlinear behavior using a newly developed test method that maintained equal rotations at the two ends of the coupling beam specimen and allowed for local deformations at the beam-wall joints. By conducting the tests under displacement control, the post-peak behavior and complete load-deflection curves of the coupling beams were obtained for investigation. It was found that after the appearance of flexural and shear cracks, a deep coupling beam would gradually transform itself from an ordinary beam to a truss composed of diagonal concrete struts and longitudinal and transverse steel reinforcement bars. Moreover, in a deep coupling beam, the local deformations at the beam-wall joints could contribute significantly (up to the order of 50%) to the total deflection of the coupling beam, especially at the post-peak stage. Finally, although a coupling beam failing in shear would have a relatively low ductility ratio of only 5 or even lower, a coupling beam failing in flexure could have a relatively high ductility ratio of 10 or higher.

불연속웨브가 도입된 프리스트레스트 합성연결보에 대한 내진성능 평가 (Evaluation of Seismic Performances on Prestressed Composite Coupling Beams with Discontinuous Webs)

  • 오재열;이득행;최승호;김강수;이성태
    • 한국구조물진단유지관리공학회 논문집
    • /
    • 제17권1호
    • /
    • pp.133-142
    • /
    • 2013
  • 연결보를 가진 전단벽 시스템은 벽체의 개별 강성을 합산한 것보다 훨씬 큰 강성을 확보할 수 있기 때문에 효율적인 횡력저항시스템으로서 40층 이하의 중 고층 건물에 널리 적용되고 있다. 일반적으로 사용되는 철근콘크리트 연결보는 철근배근이 복잡해 시공성이 저하되고, 철골연결보의 경우에는 과도한 스티프너의 사용으로 인해 경제성이 저하된다는 단점을 가지고 있다. 따라서, 이 연구에서는 철근콘크리트와 철골부재를 합성하여 시공성 및 경제성을 개선하고 단면크기를 줄일 수 있는 불연속웨브가 적용된 프리스트레스트 합성연결보를 개발하였다. 개발한 프리스트레스트 합성 연결보의 구조적인 성능을 검증하기 위해서 전단철근비를 주요 변수로 두 개의 실험체를 제작하여 반복하중실험을 수행하였으며, 실험결과는 제안된 연결보의 내진성능을 검증하였다.

반복하중을 받는 대각보강 콘크리트 연결보의 이력거동 예측을 위한 매개변수 결정방법 (Calibration of Parameters for Predicting Hysteretic Behavior of Diagonally Reinforced Concrete Coupling Beams)

  • 고혜영;한상환;허창대;이창석
    • 한국지진공학회논문집
    • /
    • 제21권6호
    • /
    • pp.303-310
    • /
    • 2017
  • The coupled shear wall system with coupling beams is an efficient structural system for high-rise buildings because it can provide excellent ductility and energy dissipation to the buildings. The objective of this study is to simulate the hysteretic behavior of diagonally reinforced concrete coupling beams including pinching and cyclic deteriorations in strength and stiffness using a numerical model. For this purpose, coupling beams are modeled with an elastic beam element and plastic spring element placed at the beam ends. Parameters for the analytical model was calibrated based on the test results of 6 specimens for diagonally reinforced concrete coupling beams. The analytical model with calibrated model parameters is verified by comparing the hysteretic curves obtained from analysis and experimental tests.