• Title/Summary/Keyword: coupled shear walls system

Search Result 29, Processing Time 0.02 seconds

Free vibration analysis of composite cylindrical shells with non-uniform thickness walls

  • Javed, Saira;Viswanathan, K.K.;Aziz, Z.A.
    • Steel and Composite Structures
    • /
    • v.20 no.5
    • /
    • pp.1087-1102
    • /
    • 2016
  • The paper proposes to characterize the free vibration behaviour of non-uniform cylindrical shells using spline approximation under first order shear deformation theory. The system of coupled differential equations in terms of displacement and rotational functions are obtained. These functions are approximated by cubic splines. A generalized eigenvalue problem is obtained and solved numerically for an eigenfrequency parameter and an associated eigenvector which are spline coefficients. Four and two layered cylindrical shells consisting of two different lamination materials and plies comprising of same as well as different materials under two different boundary conditions are analyzed. The effect of length parameter, circumferential node number, material properties, ply orientation, number of lay ups, and coefficients of thickness variations on the frequency parameter is investigated.

Cyclic Behavior of Slender Reinforced Concrete Coupling Beams with Bundled Diagonal Reinforcement (묶음 대각철근을 갖는 세장한 철근콘크리트 연결보의 이력거동)

  • Han, Sang-Whan;Yoo, Kyoung-Hwan;Lee, Ki-Hak;Shin, Myoung-Su
    • Journal of the Korea Concrete Institute
    • /
    • v.27 no.6
    • /
    • pp.661-668
    • /
    • 2015
  • Coupled shear walls are effective lateral force resisting system in which coupling beams link individual walls. For improving the energy dissipation capacity of coupling beams, diagonal reinforcement details were developed. However, it is difficult to construct diagonal reinforced coupling beams due to the congestion of reinforcement in the beam. For resolving the problem, this study developed precast coupling beams with bundled diagonal reinforcement. To reduce the reinforcement congestion, bundled diagonal reinforcement were placed in the coupling beam. To evaluate the cyclic performance of coupling beams with bundled diagonal reinforcement, experimental test were conducted. For this purpose, two slender specimens with an aspect ratio of 3.5 were made and tested. It was observed that the cyclic performance of the coupling beam with bundled diagonal reinforcement was similar with that of the coupling beam with normal diagonal reinforcement placed according to design code to ACI 318-11.

Nonlinear modeling parameters of RC coupling beams in a coupled wall system

  • Gwon, Seongwoo;Shin, Myoungsu;Pimentel, Benjamin;Lee, Deokjung
    • Earthquakes and Structures
    • /
    • v.7 no.5
    • /
    • pp.817-842
    • /
    • 2014
  • ASCE/SEI 41-13 provides modeling parameters and numerical acceptance criteria for various types of members that are useful for evaluating the seismic performance of reinforced concrete (RC) building structures. To accurately evaluate the global performance of a coupled wall system, it is crucial to first properly define the component behaviors (i.e., force-displacement relationships of shear walls and coupling beams). However, only a few studies have investigated on the modeling of RC coupling beams subjected to earthquake loading to date. The main objective of this study is to assess the reliability of ASCE 41-13 modeling parameters specified for RC coupling beams with various design details, based on a database compiling almost all coupling beam tests available worldwide. Several recently developed coupling beam models are also reviewed. Finally, a rational method is proposed for determining the chord yield rotation of RC coupling beams.

Free vibration analysis of trapezoidal Double Layered plates embedded with viscoelastic medium for general boundary conditions using differential quadrature method

  • S. Abdul Ameer;Abbas Hameed Abdul Hussein;Mohammed H. Mahdi;Fahmy Gad Elsaid;V. Tahouneh
    • Steel and Composite Structures
    • /
    • v.50 no.4
    • /
    • pp.429-441
    • /
    • 2024
  • This paper studies the free vibration behavior of trapezoidal shaped coupled double-layered graphene sheets (DLGS) system using first-order shear deformation theory (FSDT) and incorporating nonlocal elasticity theory. Two nanoplates are assumed to be bonded by an interlayer van der walls force and surrounded by an external kelvin-voight viscoelastic medium. The governing equations together with related boundary condition are discretized using a mapping-differential quadrature method (DQM) in the spatial domain. Then the natural frequency of the system is obtained by solving the eigen value matrix equation. The validity of the current study is evaluated by comparing its numerical results with those available in the literature and then a parametric study is thoroughly performed, concentrating on the series effects of angles and aspect ratio of GS, viscoelastic medium, and nonlocal parameter. The model is used to study the vibration of DLGS for two typical deformation modes, the in-phase and out-of-phase vibrations, which are investigated. Numerical results indicate that due to Increasing the damping parameter of the viscoelastic medium has reduced the frequency of both modes and this medium has been able to overdamped the oscillations and by increasing stiffness parameters both in-phase and out-of-phase vibration frequencies increased.

Output-Only System Identification and Model Updating for Performance Evaluation of Tall Buildings (초고층건물의 성능평가를 위한 응답의존 시스템판별 및 모델향상)

  • Cho, Soon-Ho
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.12 no.4
    • /
    • pp.19-33
    • /
    • 2008
  • Dynamic response measurements from natural excitation were carried out for 25- and 42-story buildings to evaluate their inherent properties, such as natural frequencies, mode shapes and damping ratios. Both are reinforced concrete buildings adopting a core wall, or with shear walls as the major lateral force resisting system, but frames are added in the plan or elevation. In particular, shear walls in a 25-story building are converted to frames from the 4th floor level downwards while maintaining a core wall throughout, resulting in a fairly complex structure. Due to this, along with similar stiffness characteristics in the principal directions, significantly coupled and closely spaced modes of motion are expected in this building, making identification rather difficult. By using various state-of-the-art system identification methods, the modal parameters are extracted, and the results are then compared. Three frequency-domain and four time-domain based operational modal identification methods are considered. Overall, all natural frequencies and damping ratios estimated from the different identification methods showed a greater consistency for both buildings, while mode shapes exhibited some degree of discrepancy, varying from method to method. On the other hand, in comparison with analysis results obtained using the initial finite element(FE) models, test results exhibited a significant difference of about doubled frequencies, at least for the three lower modes in both buildings. To improve the correlation between test and analysis, a few manual schemes of FE model updating based on plausible reasons have been applied, and acceptable results are obtained. The advantages and disadvantages of each identification method used are addressed, and some difficulties that might arise from the updating of FE models, including automatic procedures, for such large structures are carefully discussed.

Comparison analyzation of Calculation Equations for Shear strength of Steel Plate Coupling Beam (철골 플레이트 커플링보의 전단강도에 대한 기준식의 비교.분석)

  • Lee, Kyung-Hwun;Song, Han-Beom;Park, Jin-Young;Yi, Waon-Ho;Tae, Kyung-Hoon
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2008.04a
    • /
    • pp.129-132
    • /
    • 2008
  • Coupled shear wall system is the primary seismic load resisting system of buildings. The coupling beam of these buildings must exhibit excellent ductility and energy dissipation capacity. To achieve better ductility and energy dissipation, the steel coupling beam embedded in the reinforced concrete walls is proposed. Performance of the steel coupling beam is mainly effected by embedment length. ACI equation and BS equation were examined with 23 previous test results. The statistical study uses the values of mean value, standard deviation, correlation coefficient, normal distribution curve, and error analysis. Through the analytical program, the evaluation of the 2 equations was established.

  • PDF

Efficiency assessment of L-profiles and pipe fore-poling pre-support systems in difficult geological conditions: a case study

  • Elyasi, Ayub;Moradi, Taher;Moharrami, Javad;Parnian, Saeid;Mousazadeh, Akbar;Nasseh, Sepideh
    • Structural Engineering and Mechanics
    • /
    • v.57 no.6
    • /
    • pp.1125-1142
    • /
    • 2016
  • Tunneling is one of the challenging tasks in civil engineering because it involves a variety of decision making and engineering judgment based on knowledge and experience. One of the challenges is to construct tunnels in risky areas under shallow overburden. In order to prevent the collapse of ceilings and walls of a large tunnels, in such conditions, either a sequential excavation method (SEM) or ground reinforcing method, or a combination of both, can be utilized. This research deals with the numerical modeling of L-profiles and pipe fore-poling pre-support systems in the adit tunnel in northwestern Iran. The first part of the adit tunnel has been drilled in alluvial material with very weak geotechnical parameters. Despite applying an SEM in constructing this tunnel, analyzing the results of numerical modeling done using FLAC3D, as well as observations during drilling, indicate the tunnel instability. To improve operational safety and to prevent collapse, pre-support systems, including pipe fore-poling and L-profiles were designed and implemented. The results of the numerical modeling coupled with monitoring during operation, as well as the results of instrumentation, indicate the efficacy of both these methods in tunnel collapse prevention. Moreover, the results of modeling using FLAC3D and SECTION BUILDER suggest a double angle with equal legs ($2L100{\times}100{\times}10mm$) in both box profile and tee array as an alternative section to pipe fore-poling system while neither $L80{\times}80{\times}8mm$ nor $2L80{\times}80{\times}8mm$ can sustain the axial and shear stresses exerted on pipe fore-poling system.

Seismic assessment of transfer plate high rise buildings

  • Su, R.K.L.;Chandler, A.M.;Li, J.H.;Lam, N.T.K.
    • Structural Engineering and Mechanics
    • /
    • v.14 no.3
    • /
    • pp.287-306
    • /
    • 2002
  • The assessment of structural performance of transfer structures under potential seismic actions is presented. Various seismic assessment methodologies are used, with particular emphasis on the accurate modelling of the higher mode effects and the potential development of a soft storey effect in the mega-columns below the transfer plate (TP) level. Those methods include response spectrum analysis (RSA), manual calculation, pushover analysis (POA) and equivalent static load analysis (ESA). The capabilities and limitations of each method are highlighted. The paper aims, firstly, to determine the appropriate seismic assessment methodology for transfer structures using these different approaches, all of which can be undertaken with the resources generally available in a design office. Secondly, the paper highlights and discusses factors influencing the response behaviour of transfer structures, and finally provides a general indication of their seismic vulnerability. The representative Hong Kong building considered in this paper utilises a structural system with coupled shear walls and moment resisting portal-frames, above and below the TP, respectively. By adopting the wind load profile stipulated in the Code of Practice on Wind Effects: Hong Kong-1983, all the structural members are sized and detailed according to the British Standards BS8110 and the current local practices. The seismic displacement demand for the structure, when built on either rock or deep soil sites, was determined in a companion paper. The lateral load-displacement characteristic of the building, determined herein from manual calculation, has indicated that the poor ductility (brittle nature) of the mega-columns, due mainly to the high level of axial pre-compression as found from the analysis, cannot be effectively alleviated solely by increasing the quantity of confinement stirrups. The interstorey drift demands at lower and upper zones caused by seismic actions are found to be substantially higher than those arising from wind loads. The mega-columns supporting the TP and the coupling beams at higher zones are identified to be the most vulnerable components under seismic actions.

Influence of bi-directional seismic pounding on the inelastic demand distribution of three adjacent multi-storey R/C buildings

  • Skrekas, Paschalis;Sextos, Anastasios;Giaralis, Agathoklis
    • Earthquakes and Structures
    • /
    • v.6 no.1
    • /
    • pp.71-87
    • /
    • 2014
  • Interaction between closely-spaced buildings subject to earthquake induced strong ground motions, termed in the literature as "seismic pounding", occurs commonly during major seismic events in contemporary congested urban environments. Seismic pounding is not taken into account by current codes of practice and is rarely considered in practice at the design stage of new buildings constructed "in contact" with existing ones. Thus far, limited research work has been devoted to quantify the influence of slab-to-slab pounding on the inelastic seismic demands at critical locations of structural members in adjacent structures that are not aligned in series. In this respect, this paper considers a typical case study of a "new" reinforced concrete (R/C) EC8-compliant, torsionally sensitive, 7-story corner building constructed within a block, in bi-lateral contact with two existing R/C 5-story structures with same height floors. A non-linear local plasticity numerical model is developed and a series of non-linear time-history analyses is undertaken considering the corner building "in isolation" from the existing ones (no-pounding case), and in combination with the existing ones (pounding case). Numerical results are reported in terms of averages of ratios of peak inelastic rotation demands at all structural elements (beams, columns, shear walls) at each storey. It is shown that seismic pounding reduces on average the inelastic demands of the structural members at the lower floors of the 7-story building. However, the discrepancy in structural response of the entire block due to torsion-induced, bi-directionally seismic pounding is substantial as a result of the complex nonlinear dynamics of the coupled building block system.