• 제목/요약/키워드: coupled nonlinear equations

검색결과 207건 처리시간 0.023초

면내/면외 변형이 있는 회전 링의 진동해석을 위한 비선형 모델링 (Nonlinear Modelling for the Vibration Analysis of a Rotating Ring with the In-Plane/Out-of-Plane Deformations)

  • 김원석;정진태
    • 대한기계학회논문집A
    • /
    • 제27권1호
    • /
    • pp.42-47
    • /
    • 2003
  • Nonlinear models for a thin ring rotating at a constant speed are developed. The geometric nonlinearity of displacements is considered by adopting the Lagrange strain theory for the circumferential strain. By using Hamilton’s principle, the coupled nonlinear partial differential equations are derived, which describe the out-of-plane and in-plane bending, extensional and torsional motions. The natural frequencies are calculated from the linearized equations at various rotational speeds. Finally, the computation results from the nonlinear models are compared with those from a linear model. Based on the comparison, this study recommends which model is appropriate to describe the behavior of the rotating ring.

Dynamic stability and structural improvement of vibrating electrically curved composite screen subjected to spherical impactor: Finite element and analytical methods

  • Xiao, Caiyuan;Zhang, Guiju
    • Steel and Composite Structures
    • /
    • 제43권5호
    • /
    • pp.533-552
    • /
    • 2022
  • The current article deals with the dynamic stability, and structural improvement of vibrating electrically curved screen on the viscoelastic substrate. By considering optimum value for radius curvature of the electrically curved screen, the structure improvement of the system occurs. For modeling the electrically system, the Maxwell's' equation is developed. Hertz contact model in employed to obtain contact forces between impactor and structure. Moreover, variational methods and nonlinear von Kármán model are used to derive boundary conditions (BCs) and nonlinear governing equations of the vibrating electrically curved screen. Galerkin and Multiple scales solution approach are coupled to solve the nonlinear set of governing equations of the vibrating electrically curved screen. Along with the analytical solution, 3D finite element simulation via ABAQUS package is provided with the aid of a FE package for simulating the current system's response. The results are categorized in 3 different sections. First, effects of geometrical and material parameters on the vibrational performance and stability of the curves panel. Second, physical properties of the impactor are taken in to account and their effect on the absorbed energy and velocity profile of the impactor are presented. Finally, effect of the radius and initial velocity on the mode shapes of the current structure is demonstrated.

STUDIES ON MONOTONE ITERATIVE TECHNIQUE FOR NONLINEAR SYSTEM OF INITIAL VALUE PROBLEMS

  • Nanware, J.A.;Gadsing, M.N.
    • 충청수학회지
    • /
    • 제35권1호
    • /
    • pp.53-67
    • /
    • 2022
  • Nonlinear system of initial value problems involving R-L fractional derivative is studied. Monotone iterative technique coupled with lower and upper solutions is developed for the problem. It is successfully applied to study qualitative properties of solutions of nonlinear system of initial value problem when the function on the right hand side is nondecreasing.

Non-stationary vibration and super-harmonic resonances of nonlinear viscoelastic nano-resonators

  • Ajri, Masoud;Rastgoo, Abbas;Fakhrabadi, Mir Masoud Seyyed
    • Structural Engineering and Mechanics
    • /
    • 제70권5호
    • /
    • pp.623-637
    • /
    • 2019
  • This paper analyzes the non-stationary vibration and super-harmonic resonances in nonlinear dynamic motion of viscoelastic nano-resonators. For this purpose, a new coupled size-dependent model is developed for a plate-shape nano-resonator made of nonlinear viscoelastic material based on modified coupled stress theory. The virtual work induced by viscous forces obtained in the framework of the Leaderman integral for the size-independent and size-dependent stress tensors. With incorporating the size-dependent potential energy, kinetic energy, and an external excitation force work based on Hamilton's principle, the viscous work equation is balanced. The resulting size-dependent viscoelastically coupled equations are solved using the expansion theory, Galerkin method and the fourth-order Runge-Kutta technique. The Hilbert-Huang transform is performed to examine the effects of the viscoelastic parameter and initial excitation values on the nanosystem free vibration. Furthermore, the secondary resonance due to the super-harmonic motions are examined in the form of frequency response, force response, Poincare map, phase portrait and fast Fourier transforms. The results show that the vibration of viscoelastic nanosystem is non-stationary at higher excitation values unlike the elastic ones. In addition, ignoring the small-size effects shifts the secondary resonance, significantly.

INVESTIGATION OF A NEW COUPLED SYSTEM OF FRACTIONAL DIFFERENTIAL EQUATIONS IN FRAME OF HILFER-HADAMARD

  • Ali Abd Alaziz Najem Al-Sudani;Ibrahem Abdulrasool hammood Al-Nuh
    • Nonlinear Functional Analysis and Applications
    • /
    • 제29권2호
    • /
    • pp.501-515
    • /
    • 2024
  • The primary focus of this paper is to thoroughly examine and analyze a coupled system by a Hilfer-Hadamard-type fractional differential equation with coupled boundary conditions. To achieve this, we introduce an operator that possesses fixed points corresponding to the solutions of the problem, effectively transforming the given system into an equivalent fixed-point problem. The necessary conditions for the existence and uniqueness of solutions for the system are established using Banach's fixed point theorem and Schaefer's fixed point theorem. An illustrate example is presented to demonstrate the effectiveness of the developed controllability results.

유한요소법을 이용한 고속응답 솔레노이드 밸브의 거동해석 (Dynamic Analysis of Fast-Acting Solenoid Valves Using Finite Element Method)

  • 권기태;한화택
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2001년도 춘계학술대회논문집D
    • /
    • pp.927-932
    • /
    • 2001
  • It is intended to develope an algorithm for dynamic simulation of fast-acting solenoid valves. The coupled equations of the electric, magnetic, and mechanical systems should be solved simultaneously in a transient nonlinear manner. The transient nonlinear electromagnetic field is analyzed by the Finite Element Method (FEM), which is coupled with nonlinear electronic circuitry. The dynamic movement of the solenoid valve is analyzed at every time step from the force balances acting on the plunger, which include the electromagnetic force calculated from the Finite Element analysis as well as the elastic force by a spring and the hydrodynamic pressure force along the flow passage. Dynamic responses of the solenoid valves predicted by this algorithm agree well with the experimental results including bouncing effects.

  • PDF

비정상 유한요소법을 이용한 고속응답 솔레노이드 밸브의 동적거동해석 (Dynamic Analysis of Fast-Acting Solenoid Valves Using Finite Element Method)

  • 권기태;한화택
    • 대한기계학회논문집B
    • /
    • 제26권7호
    • /
    • pp.959-965
    • /
    • 2002
  • It is intended to develop an algorithm for dynamic simulation of a fast-acting solenoid valve. The coupled equations of electric, magnetic, and mechanical systems should be solved simultaneously in a transient nonlinear manner. The transient nonlinear electromagnetic field is analyzed by the Finite Element Method (FEM), which is coupled with nonlinear electronic circuitry. The dynamic movement of the solenoid valve is analyzed at every time step from the force balance acting on the plunger, which includes the electromagnetic force calculated from the Finite Element analysis as well as the elastic force by a spring and the hydrodynamic pressure force along the flow passage. Dynamic responses of the solenoid valves predicted by this algorithm agree well with the experimental results including bouncing effects.

확률적 선형화를 이용한 철도차량의 횡방향 진동에 관한 연구 (A Study on the Lateral Vibretion of a Railway Vehicle Utilizing Statistical Linearization Technique)

  • 임종순;박윤식
    • 대한기계학회논문집
    • /
    • 제10권5호
    • /
    • pp.742-750
    • /
    • 1986
  • 본 연구에서는 레일의 불규칙성을 가우시안 분포(Gausian distribution)를 갖 는 랜덤함수로 보고 레일과 바퀴의 비선형기하학적 형상을 확률적 선형화 방법으로 단 순화하여 측방향 강제진동 응답을 구하였다. 또 구하여진 rms 응답 스펙트럼은 비선 형 방정식을 직접 수치적분하여 구한 결과와 비교하므로써 확률적 선형화방법의 효용 성을 보였다. 또한 열차 주행 속도를 변화 시키면서 강제 진동 응답을 시간 영역에 서 구하였으며 그로부터 지금까지 실험결과에서 나타나고 있는 간헐적헌팅(intermit- tent hunting)에 대한 현상을 설명하였다.

Semi-active bounded optimal control of uncertain nonlinear coupling vehicle system with rotatable inclined supports and MR damper under random road excitation

  • Ying, Z.G.;Yan, G.F.;Ni, Y.Q.
    • Coupled systems mechanics
    • /
    • 제7권6호
    • /
    • pp.707-729
    • /
    • 2018
  • The semi-active optimal vibration control of nonlinear torsion-bar suspension vehicle systems under random road excitations is an important research subject, and the boundedness of MR dampers and the uncertainty of vehicle systems are necessary to consider. In this paper, the differential equations of motion of the coupling torsion-bar suspension vehicle system with MR damper under random road excitation are derived and then transformed into strongly nonlinear stochastic coupling vibration equations. The dynamical programming equation is derived based on the stochastic dynamical programming principle firstly for the nonlinear stochastic system. The semi-active bounded parametric optimal control law is determined by the programming equation and MR damper dynamics. Then for the uncertain nonlinear stochastic system, the minimax dynamical programming equation is derived based on the minimax stochastic dynamical programming principle. The worst-case disturbances and corresponding semi-active bounded parametric optimal control are obtained from the programming equation under the bounded disturbance constraints and MR damper dynamics. The control strategy for the nonlinear stochastic vibration of the uncertain torsion-bar suspension vehicle system is developed. The good effectiveness of the proposed control is illustrated with numerical results. The control performances for the vehicle system with different bounds of MR damper under different vehicle speeds and random road excitations are discussed.

Entropy analysis in a cilia transport of nanofluid under the influence of magnetic field

  • Abrar, Muhammad N.;Haq, Rizwan Ul;Awais, Muhammad;Rashid, Irfan
    • Nuclear Engineering and Technology
    • /
    • 제49권8호
    • /
    • pp.1680-1688
    • /
    • 2017
  • In this study, analysis is performed on entropy generation during cilia transport of water based titanium dioxide nanoparticles in the presence of viscous dissipation. Moreover, thermal heat flux is considered at the surface of a channel with ciliated walls. Mathematical formulation is constructed in the form of nonlinear partial differential equations. Making use of suitable variables, the set of partial differential equations is reduced to coupled nonlinear ordinary differential equations. Closed form exact solutions are obtained for velocity, temperature, and pressure gradient. Graphical illustrations for emerging flow parameters, such as Hartmann number (Ha), Brinkmann number (Br), radiation parameter (Rn), and flow rate, have been prepared in order to capture the physical behavior of these parameters. The main goal (i.e., the minimizing of entropy generation) of the second law of thermodynamics can be achieved by decreasing the magnitude of Br, Ha and ${\Lambda}$ parameters.