• Title/Summary/Keyword: coupled natural frequency

Search Result 208, Processing Time 0.026 seconds

Nonlinear Vibration Analysis of a Rotating Ring (회전하는 링의 비선형 진동해석)

  • Jeong, Jin-Tae;Kim, Seon-Gyeong;Lee, Su-Il
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.25 no.7
    • /
    • pp.1119-1124
    • /
    • 2001
  • Nonlinear Vibration of a flexible circular ring is studied in this paper. Based upon the von Karman strain theory, the nonlinear governing equations are derived, in which the in-plane bending and extension displacements as well as the out-of-plane bending displacement are fully coupled. After discretizing the governing equations by the Galerkin approximation method, we obtain the linearlized equation by using the pertubation method. The results from the linearlized equations show that the in-plane displacement has effects on the natural frequencies of the out-of-plane displacement.

In-plane Vibration Analysis for an Axially Moving Membrane (축방향으로 움직이는 박막의 면내 진동해석)

  • 정진태;신창호;김원석
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.12 no.3
    • /
    • pp.221-227
    • /
    • 2002
  • The longitudinal and lateral in-plane vibrations of an axially moving membrane are investigated when the membrane has translating acceleration. By extended Hamilton's principle, the governing equations are derived. The equations of motion for the in-plane vibrations are linear and coupled. These equations are discretized by using the Galerkin approximation method after they are transformed into the variational equations, j.e., the weak forms so that the admissible functions can be used for the bases of the in-plane deflections. With the discretized equations for the in-plane vibrations, the natural frequencies and the time histories of the deflections are obtained.

Case Study on Hydroelastic Vibration of Plate for Various Bounded Fluid Field (유체장 변화에 따른 사각형 탱크의 진동에 관한 연구)

  • Choi, S.H.;Jo, H.D.;Kim, K.S.
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.17 no.1 s.118
    • /
    • pp.3-9
    • /
    • 2007
  • In this paper, a numerical case study is carried out on the hydroelastic vibration of rectangular plate with various fluid field. It is assumed that the tank wall is clamped along the plate edges. The VMM(virtual mass method) of Nastran is used for the simulation of fluid domain and calculating natural frequency of fluid-coupled structure. In this paper, natural frequencies are calculated and compared for rectangular plates with various fluid field such as infinite fluid and finite fluid, length change of finite fluid field and various fluid contacting conditions.

Vibration Reduction of Vertical Pumps Used in the Power Plant Circulating Water System (발전소 순환수계통 수직펌프의 진동저감에 관한 연구)

  • Park, Hyeok;Yoo, Ho-Seon
    • Plant Journal
    • /
    • v.9 no.1
    • /
    • pp.43-49
    • /
    • 2013
  • In this study, the natural frequency of the actual operating vertical pump in the P combined cycle power plant is measured and the cause of high vibration is determined by using fluid-structure coupled vibration theory. Choosing the vibration reduction plan suited for field conditions and using the numerical analysis verify effectiveness of the plan. The plan is applied to the actual pump and the empirical experiments are conducted.

  • PDF

A Free Vibration Analysis of Sound-Structure Interaction Plate (구조-음향 연성평판의 자유진동해석)

  • Lee, Dong-Ick;O, Jae-Eung
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.20 no.8
    • /
    • pp.2546-2554
    • /
    • 1996
  • In order to investigate the characteristics of sound-structure interaction problems, we modeled a rectangular cavity and the flexible wall of the cavity. Because the governing equations of motion are coupled through velocity terms, we could redefine them using the velocity potential. We calculated the natural frequencies of plate using orthogonal polynomial functions which satisfy the boundary conditions in the Rayleigh-Ritz Method. As the result, comparisons of theory and experiment show good agreement. and using orthogonal polynomial functions which satisfy the boundary conditions in the Rayleigh-Ritz method show useful method for sound-structure interaction problems too.

Development of Vibrational Analysis Algorithm for Truncated Conical Shells (끝이 잘린 원추형 셸의 진동해석 알고리즘의 개발)

  • Yeo, D.J.
    • Journal of Power System Engineering
    • /
    • v.9 no.3
    • /
    • pp.58-65
    • /
    • 2005
  • This paper deals with the free vibrations of truncated conical shell with uniform thickness by the transfer influence coefficient method. The classical thin shell theory based upon the $Fl\ddot{u}gge$ theory is assumed and the governing equations of a conical shell are written as a coupled set of first order differential equations using the transfer matrix. The Runge-Kutta-Gill integration and bisection method are used to solve the governing differential equations and to compute the eigenvalues respectively. The natural frequencies and corresponding mode shapes are calculated numerically for the truncated conical shell with any combination of boundary conditions at the edges. And all boundary conditions and the intermediate supports between conical shell and foundation could be treated only by adequately varying the values of the spring constants. Numerical results are compared with existing exact and numerical solutions of other methods.

  • PDF

Study on the D.C Excitation Commutation Method of SRM for Reduction of Vibration/Acoustic Noise (SRM의 진동.소음의 저감을 위한 직류여자 전류방식에 관한 연구)

  • 오석규;추영배;이일천;황영문
    • Proceedings of the KIPE Conference
    • /
    • 1999.07a
    • /
    • pp.147-150
    • /
    • 1999
  • SRM drives generate large vibration and acoustic noise because it is commutated individually by step pulse m.m.f on each phase pole. The frequency or motor speed of peak vibrations and acoustic noises is coincided with the natural resonant frequency of the magnetic structure and frame material. And this radial vibration force is induced on the phase commutation region. This paper suggest the new electromagnetic structure of SRM with auxiliary commutation winding excited d.c e.m.f.. This phase- commutating winding is coupled magnetically between one phase winding and the vibrating force is falled down. As a result, SRM with d.c exciting commutation winding is very useful to reduce vibration and acoustic noise of SRM drive.

  • PDF

Investigation of the High Cycle Fatigue Crack of the Gas Turbine Compressor Blade Using Finite Element Analysis (유한요소해석을 이용한 가스터빈 압축기 블레이드 피로균열 해석)

  • Yun, Wan-No;Kim, Jun-Sung
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.27 no.12
    • /
    • pp.107-112
    • /
    • 2010
  • A gas turbine consists of an upstream compressor and a downstream turbine with a combustion chamber, and also the compressor and the turbine are generally coupled using a single shaft. Large scale gas turbine compressor is designed as multi-stage axial flow and the blade is fan-type which is thick and wide. Recently radial cracking happens occasionally at the compressor blade tip of large scale gas turbine. So, FEM was performed on the compressor blade and vibration modes and dynamic stresses were analyzed. According to the analysis, 9th natural frequency mode of the blade, which is 2 strip mode, is near the vane passing frequency by the vane located at the upstream of the blade.

Free Vibration Analysis of a Rotating Cantilever Beam Made-up of Functionally Graded Materials (경사기능재료를 사용한 회전하는 외팔보의 진동해석)

  • Lee, Ki Bok;Yoo, Hong Hee
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.23 no.8
    • /
    • pp.742-751
    • /
    • 2013
  • The vibration analysis of a rotating cantilever beam made-up of functionally graded materials is presented based on Timoshenko beam theory. The material properties of the beams are assumed to be varied through the thickness direction following a simple power-law form. The frequency equations, which are coupled through gyroscopic coupling terms, are calculated using hybrid deformation variable modeling along with the Rayleigh-Ritz assumed mode methods. In this study, resulting system of ordinary differential equations shows the effects of power-law exponent, angular speed, length to height ratio and Young's modulus ratio. It is believed that the results will be a reference with which other researchers and commercial FE analysis program, ANSYS can compare their results.

Low-Frequency Vibration Analysis of a Center Pillar-to-Roof Rail Joint : Modelling Technique and Problems (센터 필라-루프 레일 조인트의 저진동 해석 : 모델링 기법과 문제점)

  • 김윤영;강정훈;송상헌
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.5 no.1
    • /
    • pp.59-68
    • /
    • 1997
  • The modelling techniques of a center pillar-to-roof rail joint for low frequency vibration analysis are examined and some fundamental problems are addressed. To develop a simplified beam-spring model of the joint, the present work is focused on 1) practical shell modelling techniques and 2) joint spring stiffness estimation methods a practical model-updating method to match the calculated natural frequencies to the experimentally determine ones is proposed, particularly focusing on spot welding modelling. In joint spring modelling, the results from the model with one joint spring are compared with those from the model with three coupled springs. Finally, some fundamental problems in beam-spring modelling are addressed.

  • PDF