• Title/Summary/Keyword: coupled lines

Search Result 298, Processing Time 0.025 seconds

Design of Tapped Coupled-Line Filters Using a New Equivalent Circuit Model of Tapped lines (탭 선로의 등가회로를 이용한 여파기 설계)

  • Han, Sung-Jin;Kim, Kang-Wook
    • Proceedings of the Korea Electromagnetic Engineering Society Conference
    • /
    • 2003.11a
    • /
    • pp.371-375
    • /
    • 2003
  • In this paper, a new design method for coupled-line filters with tapped input/output has been developed. The design equations for this tapped filter have been obtained using a new equivalent circuit model of tapped lines. From an edge coupled-line filter, tapped lines replaces the input/output coupled lines which tend to have very narrow gaps (few mils). Therefore, tapped coupled-line filters tend to be less sensitive to filter fabrication tolerances and to be easily fabricated using milling tools. The new filter design algorithm allows very accurate filter design for frequencies less than 20 GHz and bandwidth less than 20%. Above 20 GHz, the filter performance can be optimized starting from the filter design algorithm in this paper. Simulation problems with 2-D EM tools to characterize filter performance at high frequencies have shown to be solved by providing a channel for the filter to eliminate higher order modes.

  • PDF

Miniaturization of Branch Line Coupler with Connected Coupled Lines (연결된 결합 선로를 갖는 소형 브랜치 선로 결합기)

  • Rhee, Seung-Yeop
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.22 no.6
    • /
    • pp.598-604
    • /
    • 2011
  • A method of miniaturizing branch line coupler with connected coupled lines is presented. The quarter-wavelength transmission lines in the typical microstrip branch line coupler are replaced with the connected coupled lines with same characteristics of ones for compact size. The connected coupled line is analyzed by T-equivalent circuit and Z parameters based on the even-odd mode analysis. The proposed branch line couplers with connected coupled line are designed and fabricated on FR4 substrate at 2.4 GHz. The measured results show good agreement with theoretical prediction. And the experimental results show that the size of coupler is 37 precent smaller than conventional coupler. This minimized coupler is suitable for Butler Matrix as feeder for mobile communication beam forming antenna.

Design and Fabrication of Forward -3㏈ Directional Coupler Using Asymmetrical Coupled Lines with Mentalization Thickness (도체두께를 가진 비대칭 결합선로를 이용한 정방향 -3㏈ 방향성 결합기의 설계 및 제작)

  • 홍익표;윤남일;육종관
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.28 no.8A
    • /
    • pp.626-632
    • /
    • 2003
  • In this paper, forward-wave -3㏈ directional coupler with finite-thickness conductor and asymmetrical coupled lines are designed and experimentally verified using mode-matching based design methodology. Most of studies published in the literatures about the coupled lines are mainly concentrated on the adjustment of coupling amount by changing various geometric configurations. The analysis results in this paper show that thicker metalization requires reduced coupler length in the forward-wave directional coupler composed of asymmetrical coupled lines. Several forward-wave directional -3 ㏈ couplers with finite metalization thickness composed of asymmetrical coupled microstrip lines have been designed in the 5 ㎓ based on proposed design method. The measured data show -4.05㏈∼-4.09㏈ coupling at center frequency which is very closed to design value. The tight coupling has been implemented with accurate design methodology which take mentalization thickness into account.

A Study on a New Measurement Method of the Microstrip Parallel Coupled Lne Parameters (마이크로스트립 평행 결합선로 파라미터의 새로운 측정방법에 관한 연구)

  • Chang, Ik-Soo;Yoon, Young-Chul;Ahn, Dal
    • Journal of the Korean Institute of Telematics and Electronics
    • /
    • v.25 no.2
    • /
    • pp.139-143
    • /
    • 1988
  • A new measurement method of coupled transmission line characteristics is described. This method presents precision values of even-and odd-mode impedances as well as effective dielectric constants of symmetric parallel coupled microstrip lines from the scalar quantities obtained by transmission coefficients at two different resonance frequencies. Especially these values include dispersion effects in the measured frequency band. The measured impedances and effective dielectric constants of actually fabricated coupled lines on the Teflon substrates with low dielectric constants are good agreement with predicted values. And the experimental pass band characteristics of single section resonator by using previously designed coupled lines agree well with theoretical values.

  • PDF

Signal Transient and Crosstalk Model of Capacitively and Inductively Coupled VLSI Interconnect Lines

  • Kim, Tae-Hoon;Kim, Dong-Chul;Eo, Yung-Seon
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • v.7 no.4
    • /
    • pp.260-266
    • /
    • 2007
  • Analytical compact form models for the signal transients and crosstalk noise of inductive-effect-prominent multi-coupled RLC lines are developed. Capacitive and inductive coupling effects are investigated and formulated in terms of the equivalent transmission line model and transmission line parameters for fundamental modes. The signal transients and crosstalk noise expressions of two coupled lines are derived by using a waveform approximation technique. It is shown that the models have excellent agreement with SPICE simulation.

Characteristics of Linearly Tapered Coupled Strip-Line Filters (선형테이퍼 결합 Strip 선로의 여파특성)

  • 박기수
    • Journal of the Korean Institute of Telematics and Electronics
    • /
    • v.9 no.2
    • /
    • pp.1-16
    • /
    • 1972
  • In this paper, the characteristics of linearly tapered strip-line filters, where the even-mode and odd-mode characteristic impedances vary linearly with the same degree along the lines, are analyzed. The Impedance parameters of linearly tapered coupled strip-line, which is made by connecting two linearly tapered unsymmetric coupled strip-lines In cascade and the I:no input and output terminals are made equal, are obtained. Using the above parameters, the Image parameters of linearly tapered coupled strip-line filters are derived. The result of analysis shows that the line length can be made shorter and also the stop-band width between the fundamental and second pass-band becomes wider, compared with the coupled strip-line filters which use uniform strip-lines. Furthermore, the difference of impedance levels in the fundsmental and second pass-band becomes larger with the degree of taper of the lines. This property is unique, in comparison with the case of uniform or exponentially tapered strip-line filters.

  • PDF

Equivalent Circuit Design of 2.4 GHz Band LTCC Bandpass Filters Using Multilayer Inter-Digital Resonators (적층 Inter-Digital 공진기를 이용한 2.4 GHz 대역 LTCC 대역통과 여파기의 등가회로 설계)

  • Sung Gyu-Je
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.16 no.1 s.92
    • /
    • pp.78-83
    • /
    • 2005
  • LTCC filters have been widely used to wireless terminals. They generally adopt the multilayer structure. Some of multilayer LTCC filters are made of symmetrical parallel-coupled lines and anti-symmetrical parallel-coupled lines to reduce the length of resonators. The equivalent circuit of parallel-coupled lines was analyzed and applied to bandpass filters using multilayer parallel-coupled line resonators. The three-pole bandpass filter with the center frequency of 2.45 GHz is designed by using the proposed equivalent circuit and the measured results have good agreement with the design results.

Coupled Trigonomotric Transmission Line and its Application (결합삼각함수 선로와 그 응용)

  • 박송배
    • Journal of the Korean Institute of Telematics and Electronics
    • /
    • v.12 no.6
    • /
    • pp.14-20
    • /
    • 1975
  • Characteristics of coupled trigonometric transmission lines (CTTL) are studies based on the theory of general coupled nonuniform transmission lines. First, the 4-port transmission matrix parameters of networks and directional couplers using CTTL. The phase slrift characteristic of the all-pass networks and the magnitude characteristic of the directional couplers are studied in detail for various coupling and a high-pass small ripple directional coupler using CTTL are given and their physical realization is considered.

  • PDF

A Study on Characteristics of Coupled Line Employing Periodical Ground Structure on GaAs MMIC (GaAs MMIC상에서 주기적 접지구조를 가지는 결합선로의 절연특성에 관한 연구)

  • Kim, Se-Ho;Kang, Suk-Youb;Yun, Young
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.33 no.1
    • /
    • pp.159-165
    • /
    • 2009
  • In this study, using a periodical ground structure(PGS) on GaAs monolithic microwave integrated circuit(MMIC), transmission line with a high isolation characteristic was developed for application to compact signal/bias lines of highly integrated MMIC. And the origin of the high isolation characteristic was theoretically investigated. The high isolation characteristic was originated from a resonance between adjacent microstrip lines employing PGS. With only a spacing of $20{\mu}m$, the coupled microstrip line employing PGS showed an isolation value of -47 dB at 60 GHz. The frequency range for high isolation was easily controlled by changing the PGS structure. Above results indicate that microstrip lines employing PGS are very useful for application to compact signal/bias lines of highly integrated MMIC requiring a high isolation characteristics between lines. In addition, equivalent circuit employing closed-form equation for the coupled line with PGS was also extracted.

A New Design Method of Tapped Coupled-Line Filters (탭 선로를 이용한 새로운 결합선로 여파기 설계법)

  • 우동식;김강욱
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.15 no.11
    • /
    • pp.1100-1107
    • /
    • 2004
  • In this paper, a new design method fur tapped coupled-line filters has been developed. The design equations for this tapped-line filter have been obtained using a new equivalent circuit model of tapped lines. These tapped-lines replace input/output coupled lines of the conventional edge coupled-line filters, which tend to have very narrow line gaps(few mils). Therefore, tapped coupled-line filters tend to be less sensitive to filter fabrication tolerances and to be easily fabricated using milling tools. The new filter design algorithm allows very accurate filter design for frequencies up to 20 GHz and bandwidth less than 20 %.