• Title/Summary/Keyword: coupled error

Search Result 313, Processing Time 0.204 seconds

Study on Material Fracture and Debris Dispersion Behavior via High Velocity Impact (고속충돌에 따른 재료 파괴 및 파편의 분산거동 연구)

  • Sakong, Jae;Woo, Sung-Choong;Kim, Jin-Young;Kim, Tae-Won
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.41 no.11
    • /
    • pp.1065-1075
    • /
    • 2017
  • In this study, high velocity impact tests along with modeling of material behavior and numerical analyses were conducted to predict the dispersion behavior of the debris resulting from a high velocity impact fracture. For the impact tests, two different materials were employed for both the projectile and the target plate - the first setup employed aluminum alloy while the second employed steel. The projectile impacts the target plate with a velocity of approximately 1 km/s were enforced to generate the impact damages in the aluminum witness plate through the fracture debris. It was confirmed that, depending on the material employed, the debris dispersion behavior as well as the dispersion radii on the witness plate varied. A numerical analysis was conducted for the same impact test conditions. The smoothed particle hydrodynamics (SPH)-finite element (FE) coupled technique was then applied to model the fracture and damage upon the debris. The experimental and numerical results for the diameters of the perforation holes in the target plate and the debris dispersion radii on the witness plate were in agreement within a 5% error. In addition, the impact test using steel was found to be more threatening as proven by the larger debris dispersion radius.

Determination of Optimal Unit Hydrographs and Infultration Rate Functions from Single Rainfall-Runoff Event (단순 강우-유출 사상으로부터 최적단위도와 침투율의 결정)

  • An, Tae-Jin;Ryu, Hui-Jeong;Jeong, Gwang-Geun;Sim, Myeong-Pil
    • Journal of Korea Water Resources Association
    • /
    • v.33 no.3
    • /
    • pp.365-374
    • /
    • 2000
  • This paper is to present the determination of the optimal Joss rate parameters and urnt bydrographs from the observed single rainfall-runoff event using optimization models coupled with a stochastic technique for the global solution. Two kinds of the linear program models are formulated to derive the optimal unit hydrographs and loss rate parameters for gaged basins; one mimmizes the summation of the absolute residual between predlCted and observed runoff ordinates and the other, the maximum absolute residuaL Multistart algorithm which is one or stochastic techniques for the global optimum is adopted to perturb the parameters of the loss rate equations. Multistart efficiently searches the feasIble region to identify the global optimlUll for loss rate parameters, which yields the optimal loss rate parameters and unit hydrograph for Kostiakov's, Plulip's, and Horton's equation. The unique unit hydrograph ordinates for a gIven rainfall-runoff event iS exclusrvely obtained WIth $\Phi$ index, but unit hydrograph ordinates depend upon the parameters [or each loss rate equations. The parameters of Green-Ampt's are determined through a trial and error method. In this paper the single rainfall-nmoff event observed from a watershed is considered to test the proposed method. The optimal unit hydrograph herein found has smaller deviations than the ones reported previously by other researchers.

  • PDF

Application Analysis of GIS Based Distributed Model Using Radar Rainfall (레이더강우를 이용한 GIS기반의 분포형모형 적용성 분석)

  • Park, Jin-Hyeog;Kang, Boo-Sik;Lee, Geun-Sang
    • Journal of Korean Society for Geospatial Information Science
    • /
    • v.16 no.1
    • /
    • pp.23-32
    • /
    • 2008
  • According to recent frequent local flash flood due to climate change, the very short-term rainfall forecast using remotely sensed rainfall like radar is necessary to establish. This research is to evaluate the feasibility of GIS-based distributed model coupled with radar rainfall, which can express temporal and spatial distribution, for multipurpose dam operation during flood season. $Vflo^{TM}$ model was used as physically based distributed hydrologic model. The study area was Yongdam dam basin ($930\;km^2$) and the 3 storm events of local convective rainfall in August 2005, and the typhoon.Ewiniar.and.Bilis.collected from Jindo radar was adopted for runoff simulation. Distributed rainfall consistent with hydrologic model grid resolution was generated by using K-RainVieux, pre-processor program for radar rainfall. The local bias correction for original radar rainfall shows reasonable results of which the percent error from the gauge observation is less than 2% and the bias value is $0.886{\sim}0.908$. The parameters for the $Vflo^{TM}$ were estimated from basic GIS data such as DEM, land cover and soil map. As a result of the 3 events of multiple peak hydrographs, the bias of total accumulated runoff and peak flow is less than 20%, which can provide a reasonable base for building operational real-time short-term rainfall-runoff forecast system.

  • PDF

Evaluation of Long-Term Seasonal Predictability of Heatwave over South Korea Using PNU CGCM-WRF Chain (PNU CGCM-WRF Chain을 이용한 남한 지역 폭염 장기 계절 예측성 평가)

  • Kim, Young-Hyun;Kim, Eung-Sup;Choi, Myeong-Ju;Shim, Kyo-Moon;Ahn, Joong-Bae
    • Atmosphere
    • /
    • v.29 no.5
    • /
    • pp.671-687
    • /
    • 2019
  • This study evaluates the long-term seasonal predictability of summer (June, July and August) heatwaves over South Korea using 30-year (1989~2018) Hindcast data of the Pusan National University Coupled General Circulation Model (PNU CGCM)-Weather Research and Forecasting (WRF) chain. Heatwave indices such as Number of Heatwave days (HWD), Heatwave Intensity (HWI) and Heatwave Warning (HWW) are used to explore the long-term seasonal predictability of heatwaves. The prediction skills for HWD, HWI, and HWW are evaluated in terms of the Temporal Correlation Coefficient (TCC), Root Mean Square Error (RMSE) and Skill Scores such as Heidke Skill Score (HSS) and Hit Rate (HR). The spatial distributions of daily maximum temperature simulated by WRF are similar overall to those simulated by NCEP-R2 and PNU CGCM. The WRF tends to underestimate the daily maximum temperature than observation because the lateral boundary condition of WRF is PNU CGCM. According to TCC, RMSE and Skill Score, the predictability of daily maximum temperature is higher in the predictions that start from the February and April initial condition. However, the PNU CGCM-WRF chain tends to overestimate HWD, HWI and HWW compared to observations. The TCCs for heatwave indices range from 0.02 to 0.31. The RMSE, HR and HSS values are in the range of 7.73 to 8.73, 0.01 to 0.09 and 0.34 to 0.39, respectively. In general, the prediction skill of the PNU CGCM-WRF chain for heatwave indices is highest in the predictions that start from the February and April initial condition and is lower in the predictions that start from January and March. According to TCC, RMSE and Skill Score, the predictability is more influenced by lead time than by the effects of topography and/or terrain feature because both HSS and HR varies in different leads over the whole region of South Korea.

Rapid Screening of Naturally Occurring Radioactive Nuclides (238U, 232Th) in Raw Materials and By-Products Samples Using XRF

  • Park, Ji-Young;Lim, Jong-Myoung;Ji, Young-Yong;Lim, Chung-Sup;Jang, Byung-Uck;Chung, Kun Ho;Lee, Wanno;Kang, Mun-Ja
    • Journal of Radiation Protection and Research
    • /
    • v.41 no.4
    • /
    • pp.359-367
    • /
    • 2016
  • Background: As new legislation has come into force implementing radiation safety management for the use of naturally occurring radioactive materials (NORM), it is necessary to establish a rapid and accurate measurement technique. Measurement of $^{238}U$ and $^{232}Th$ using conventional methods encounter the most significant difficulties for pretreatment (e.g., purification, speciation, and dilution/enrichment) or require time-consuming processes. Therefore, in this study, the applicability of ED-XRF as a non-destructive and rapid screening method was validated for raw materials and by-product samples. Materials and Methods: A series of experiments was conducted to test the applicability for rapid screening of XRF measurement to determine activity of $^{238}U$ and $^{232}Th$ based on certified reference materials (e.g., soil, rock, phosphorus rock, bauxite, zircon, and coal ash) and NORM samples commercially used in Korea. Statistical methods were used to compare the analytical results of ED-XRF to those of certified values of certified reference materials (CRM) and inductively coupled plasma mass spectrometry (ICP-MS). Results and Discussion: Results of the XRF measurement for $^{238}U$ and $^{232}Th$ showed under 20% relative error and standard deviation. The results of the U-test were statistically significant except for the case of U in coal fly ash samples. In addition, analytical results of $^{238}U$ and $^{232}Th$ in the raw material and by-product samples using XRF and the analytical results of those using ICP-MS ($R^2{\geq}0.95$) were consistent with each other. Thus, the analytical results rapidly derived using ED-XRF were fairly reliable. Conclusion: Based on the validation results, it can be concluded that the ED-XRF analysis may be applied to rapid screening of radioactivities ($^{238}U$ and $^{232}Th$) in NORM samples.

Elimination of Redundant Input Information and Parameters during Neural Network Training (신경망 학습 과정중 불필요한 입력 정보 및 파라미터들의 제거)

  • Won, Yong-Gwan;Park, Gwang-Gyu
    • The Transactions of the Korea Information Processing Society
    • /
    • v.3 no.3
    • /
    • pp.439-448
    • /
    • 1996
  • Extraction and selection of the informative features play a central role in pattern recognition. This paper describes a modified back-propagation algorithm that performs selection of the informative features and trains a neural network simultaneously. The algorithm is mainly composed of three repetitive steps : training, connection pruning, and input unit elimination. Afer initial training, the connections that have small magnitude are first pruned. Any unit that has a small number of connections to the hidden units is deleted,which is equivalent to excluding the feature corresponding to that unit.If the error increases,the network is retraned,again followed by connection pruning and input unit elimination.As a result,the algorithm selects the most im-portant features in the measurement space without a transformation to another space.Also,the selected features are the most-informative ones for the classification,because feature selection is tightly coupled with the classifi-cation performance.This algorithm helps avoid measurement of redundant or less informative features,which may be expensive.Furthermore,the final network does not include redundant parameters,i.e.,weights and biases,that may cause degradation of classification performance.In applications,the algorithm preserves the most informative features and significantly reduces the dimension of the feature vectors whiout performance degradation.

  • PDF

A Study on the Predictability of the Number of Days of Heat and Cold Damages by Growth Stages of Rice Using PNU CGCM-WRF Chain in South Korea (PNU CGCM-WRF Chain을 이용한 남한지역 벼의 생육단계별 고온해 및 저온해 발생일수에 대한 예측성 연구)

  • Kim, Young-Hyun;Choi, Myeong-Ju;Shim, Kyo-Moon;Hur, Jina;Jo, Sera;Ahn, Joong-Bae
    • Atmosphere
    • /
    • v.31 no.5
    • /
    • pp.577-592
    • /
    • 2021
  • This study evaluates the predictability of the number of days of heat and cold damages by growth stages of rice in South Korea using the hindcast data (1986~2020) produced by Pusan National University Coupled General Circulation Model-Weather Research and Forecasting (PNU CGCM-WRF) model chain. The predictability is accessed in terms of Root Mean Square Error (RMSE), Normalized Standardized Deviations (NSD), Hit Rate (HR) and Heidke Skill Score (HSS). For the purpose, the model predictability to produce the daily maximum and minimum temperatures, which are the variables used to define heat and cold damages for rice, are evaluated first. The result shows that most of the predictions starting the initial conditions from January to May (01RUN to 05RUN) have reasonable predictability, although it varies to some extent depending on the month at which integration starts. In particular, the ensemble average of 01RUN to 05RUN with equal weighting (ENS) has more reasonable predictability (RMSE is in the range of 1.2~2.6℃ and NSD is about 1.0) than individual RUNs. Accordingly, the regional patterns and characteristics of the predicted damages for rice due to excessive high- and low-temperatures are well captured by the model chain when compared with observation, particularly in regions where the damages occur frequently, in spite that hindcasted data somewhat overestimate the damages in terms of number of occurrence days. In ENS, the HR and HSS for heat (cold) damages in rice is in the ranges of 0.44~0.84 and 0.05~0.13 (0.58~0.81 and -0.01~0.10) by growth stage. Overall, it is concluded that the PNU CGCM-WRF chain of 01RUN~05RUN and ENS has reasonable capability to predict the heat and cold damages for rice in South Korea.

A Study of The Vitalizing Effects of Smartphone Film Production on International Exchange : Focusing on Smartphone Film Workshop of Korean-Vietnamese (스마트폰 영화제작을 통한 국제 교류 활성화 연구 : 한국-베트남 영화제 스마트폰 영화 워크숍을 중심으로)

  • Sung, Si-Hup
    • Journal of Korea Entertainment Industry Association
    • /
    • v.13 no.2
    • /
    • pp.1-12
    • /
    • 2019
  • Based on the capabilities of smartphone cameras which have developed rapidly in recent decades, coupled with and the global market penetration rate, it will study the possibility of various international exchanges through smartphone filmmaking. This aims to achieve a civilian-oriented cultural exchange, instead of simply providing capital-oriented exchanges and film production education. The Smartphone Film Workshop was held as an auxiliary event of the Korea-Vietnam Film Festival, which ran from November 17 to 22, 2017. The three-day workshop, which took place within the festival period, drew attention for its international collaboration project between Korean film directors and Vietnamese film students. The researcher conducted practical-based research while participating as a mentor at this workshop. A step-by-step approach to the entire process of production and post-production was administered, including workshop team composition, scenario, and pre-production in Korea such as shooting equipment, schedule, completion of local works, and screening. Through an analysis of exchange cases at international workshops, we will use trial and error as ways to improve and consider the results of cultural exchanges and the effects of future expectations. Taking this empirical case study into account, we anticipate more active international exchanges through the smartphone workshops.

Fundamental Frequency Extraction of Stay Cable based on Energy Equation (에너지방정식에 기초한 사장 케이블 기본진동수 추출)

  • Kim, Hyeon Kyeom;Hwang, Jae Woong;Lee, Myeong Jae
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.28 no.1A
    • /
    • pp.125-133
    • /
    • 2008
  • According to longer and longer span, dynamic instability of stay cable should be prevented. Dynamic instability occurs mainly symmetric 1st mode and antisymmetric 1st mode in stay cable. Especially symmetric 1st mode has a lot of influence on sag. Therefore fundamental frequency of stay cable is different from that of taut sting. Irvine, Triantafyllou, Ahn etc. analyzed dynamic behavior of taut cable with sag through analytical technical and their researches give important results for large bounds of Irvine parameter. But each research shows mutually different values out of characteristic (cross-over or mode-coupled) point and each solution of frequency equations of all researchers can be very difficultly found because of their very high non-linearity. Presented study focuses on fundamental frequency of stay cable. Generalized mechanical energy with symmetric 1st mode vibration shape satisfied boundary conditions is evolved by Rayleigh-Ritz method. It is possible to give linear analytic solution within characteristic point. Error by this approach shows only below 3% at characteristic point against existing researches. And taut cable don't exceed characteristic point. I.e. high accuracy, easy solving techniques, and a little bit limitations. Therefore presented study can be announced that it is good study ergonomically.

Minimum area for circular isolated footings with eccentric column taking into account that the surface in contact with the ground works partially in compression

  • Inocencio Luevanos-Soto;Arnulfo Luevanos-Rojas;Victor Manuel Moreno-Landeros;Griselda Santiago-Hurtado
    • Coupled systems mechanics
    • /
    • v.13 no.3
    • /
    • pp.201-217
    • /
    • 2024
  • This study aims to develop a new model to obtain the minimum area in circular isolated footings with eccentric column taking into account that the surface in contact with the ground works partially in compression, i.e., a part of the contact area of the footing is subject to compression and the other there is no pressure (pressure zero). The new model is formulated from a mathematical approach based on a minimum area, and it is developed by integration to obtain the axial load "P", moment around the X axis "Mx" and moment around the Y axis "My" in function of σmax (available allowable soil pressure) R (radius of the circular footing), α (angle of inclination where the resultant moment appears), y0 (distance from the center of the footing to the neutral axis measured on the axis where the resultant moment appears). The normal practice in structural engineering is to use the trial and error procedure to obtain the radius and area of the circular footing, and other engineers determine the radius and area of circular footing under biaxial bending supported on elastic soils, but considering a concentric column and the contact area with the ground works completely in compression. Three numerical problems are given to determine the lowest area for circular footings under biaxial bending. Example 1: Column concentric. Example 2: Column eccentric in the direction of the X axis to 1.50 m. Example 3: Column eccentric in the direction of the X axis to 1.50 m and in the direction of the Y axis to 1.50 m. The new model shows a great saving compared to the current model of 44.27% in Example 1, 50.90% in Example 2, 65.04% in Example 3. In this way, the new minimum area model for circular footings will be of great help to engineers when the column is located on the center or edge of the footing.