Browse > Article
http://dx.doi.org/10.14191/Atmos.2021.31.5.577

A Study on the Predictability of the Number of Days of Heat and Cold Damages by Growth Stages of Rice Using PNU CGCM-WRF Chain in South Korea  

Kim, Young-Hyun (Department of Atmospheric Sciences, Pusan National University)
Choi, Myeong-Ju (Department of Atmospheric Sciences, Pusan National University)
Shim, Kyo-Moon (National Institute of Agricultural Sciences, RDA)
Hur, Jina (National Institute of Agricultural Sciences, RDA)
Jo, Sera (National Institute of Agricultural Sciences, RDA)
Ahn, Joong-Bae (Department of Atmospheric Sciences, Pusan National University)
Publication Information
Atmosphere / v.31, no.5, 2021 , pp. 577-592 More about this Journal
Abstract
This study evaluates the predictability of the number of days of heat and cold damages by growth stages of rice in South Korea using the hindcast data (1986~2020) produced by Pusan National University Coupled General Circulation Model-Weather Research and Forecasting (PNU CGCM-WRF) model chain. The predictability is accessed in terms of Root Mean Square Error (RMSE), Normalized Standardized Deviations (NSD), Hit Rate (HR) and Heidke Skill Score (HSS). For the purpose, the model predictability to produce the daily maximum and minimum temperatures, which are the variables used to define heat and cold damages for rice, are evaluated first. The result shows that most of the predictions starting the initial conditions from January to May (01RUN to 05RUN) have reasonable predictability, although it varies to some extent depending on the month at which integration starts. In particular, the ensemble average of 01RUN to 05RUN with equal weighting (ENS) has more reasonable predictability (RMSE is in the range of 1.2~2.6℃ and NSD is about 1.0) than individual RUNs. Accordingly, the regional patterns and characteristics of the predicted damages for rice due to excessive high- and low-temperatures are well captured by the model chain when compared with observation, particularly in regions where the damages occur frequently, in spite that hindcasted data somewhat overestimate the damages in terms of number of occurrence days. In ENS, the HR and HSS for heat (cold) damages in rice is in the ranges of 0.44~0.84 and 0.05~0.13 (0.58~0.81 and -0.01~0.10) by growth stage. Overall, it is concluded that the PNU CGCM-WRF chain of 01RUN~05RUN and ENS has reasonable capability to predict the heat and cold damages for rice in South Korea.
Keywords
PNU CGCM; WRF; predictability; rice; heat damage; cold damage;
Citations & Related Records
Times Cited By KSCI : 5  (Citation Analysis)
연도 인용수 순위
1 Lesk, C., P. Rowhani, and N. Ramankutty, 2016: Influence of extreme weather disasters on global crop production. Nature, 529, 84-87, doi:10.1038/nature16467.   DOI
2 Shim, K.-M., Y.-S. Kim, M.-P. Jung, I.-T. Choi, and S.-H. Min, 2014: Agro-climatic zonal characteristics of the frequency of abnormal duration of sunshine in South Korea. Korean J. Agric. Forest Meteorol., 16, 83-91, doi:10.5532/KJAFM.2014.16.1.83 (in Korean with English abstract).   DOI
3 Skamarock, W. C., J. B. Klemp, J. Dudhia, D. O. Gill, D. M. Barker, M. G. Duda, X.-Y. Huang, W. Wang, and J. G. Powers, 2008: A description of the advanced research WRF version 3. NCAR Tech. Rep., NCAR/TN475+STR, 113 pp, doi:10.5065/D68S4MVH.
4 Sun, J., and J. B. Ahn, 2011: A GCM-based forecasting model for the landfall of tropical cyclones in China. Adv. Atmos. Sci., 28, 1049-1055, doi:10.1007/s00376-011-0122-8.   DOI
5 Sun, J., and J. B. Ahn, 2015: Dynamical seasonal predictability of the Arctic Oscillation using a CGCM. Int. J. Climatol., 35, 1342-1353, doi:10.1002/joc.4060.   DOI
6 UN, 2019: World Population Prospects 2019. Highlights. United Nations, Department of Economic and Social Affairs, Population Division, ST/ESA/SER.A/423, 39pp.
7 Yun, J. I., 1999: Agricultural meteorology. Arche Inc., 337pp.
8 Hong, S.-Y., Y. Noh, and J. Dudhia, 2006: A new vertical diffusion package with an explicit treatment of entrainment processes. Mon. Wea. Rev., 134, 2318-2341, doi:10.1175/MWR3199.1.   DOI
9 Kiehl, J. T., J. J. Hack, G. B. Bonan, B. A. Boville, B. P. Briegleb, D. L. Williamson, and P. J. Rasch, 1996: Description of the NCAR Community Climate Model (CCM3). NCAR Tech. Rep., NCAR/TN-420+STR, 152 pp, doi:10.5065/D6FF3Q99.
10 Kim, G.-H, 2020: Development of an agrophotovoltaic system and analysis of the agronomic characteristic of crops under agrophotovoltaic system. Bull. Korea Photovoltaic Soc., 6, 15-24 (in Korean).
11 Hong, S.-Y., J. Dudhia, and S.-H. Chen, 2004: A revised approach to ice microphysical processes for the bulk parameterization of clouds and precipitation. Mon. Wea. Rev., 132, 103-120, doi:10.1175/1520-0493(2004)132<0103:ARATIM>2.0.CO;2.   DOI
12 Jeong, H.-K., C.-G. Kim, and D.-H. Moon, 2013: Impacts of abnormal weather factors on rice production. J. Climate Change Res., 4, 317-330 (in Korean with English abstract).
13 Park, C., D.-H. Cha, G. Kim, G. Lee, D.-K. Lee, M.-S. Suh, S.-Y. Hong, J.-B. Ahn, and S.-K. Min, 2020: Evaluation of summer precipitation over Far East Asia and South Korea simulated by multiple regional climate models. Int. J. Climatol., 40, 2270-2284, doi:10.1002/joc.6331.   DOI
14 Mlawer, E. J., S. J. Taubman, P. D. Brown, M. J. Iacono, and S. A. Clough, 1997: Radiative transfer for inhomogeneous atmospheres: RRTM, a validated correlated-k model for the longwave. J. Geophys. Res. Atmos., 102, 16663-16682, doi:10.1029/97JD00237.   DOI
15 Wilks, D. S., 1995: Statistical Methods in the Atmospheric Sciences. Academic Press, 467 pp.
16 Park, C., and Coauthors, 2016: Evaluation of multiple regional climate models for summer climate extremes over East Asia. Climate Dyn., 46, 2469-2486, doi:10.1007/s00382-015-2713-z.   DOI
17 Son, I.-C., K. H. Moon, E. Y. Song, S. Oh, H. Seo, and J. Yang, 2015: Effects of differentiated temperature based on growing season temperature on growth and physiological response in Chinese cabbage 'Chunkwang'. Korean J. Agric. Forest Meteorol., 17, 254-260, doi:10.5532/KJAFM.2015.17.3.254 (in Korean with English abstract).   DOI
18 Teutschbein, C., and J. Seibert, 2012: Bias correction of regional climate model simulations for hydrological climate-change impact studies: Review and evaluation of different methods. J. Hydrol., 456, 12-29.   DOI
19 Kim, M.-R, 2011: The Status of Korea's rice industry and the rice processing industry. Food Indust. Nutr., 16, 22-26 (in Korean).
20 Kim, D.-J., and J.-H. Kim, 2018: An outlook of changes in the flowering dates and low temperature after flowering under the RCP8.5 projected climate condition. Korean J. Agric. Forest Meteorol., 20, 313-320, doi:10.5532/KJAFM.2018.20.4.313 (in Korean with English abstract).   DOI
21 Bonan, G. B., 1998: The land surface climatology of the NCAR land surface model coupled to the NCAR community climate model. J. Climate, 11, 1307-1326.   DOI
22 Lee, S.-H., I.-H. Heo, K.-M. Lee, S.-Y. Kim, Y.-S. Lee, and W.-T. Kwon, 2008: Impacts of climate change on phonology and growth of crops: In the case of Naju. J. Korean Geograph. Soc., 43, 20-35 (in Korean with English abstract).
23 Kim, S., I. Heo, and S. Lee, 2010: Impacts of temperature rising on changing of cultivation area of apple in Korea. J. Korean Assoc. Reg. Geograph., 16, 201-215 (in Korean with English abstract).
24 Lee, D., and Coauthors, 2017: Thermodynamic and dynamic contributions to future changes in summer precipitation over Northeast Asia and Korea: a multi-RCM study. Climate Dyn., 49, 4121-4139, doi:10.1007/s00382-017-3566-4.   DOI
25 Lee, M.-H., N.-K. Park, and S.-H. Park, 1989: Mechanisms of cold injury and cultural practices for reducing damage of rice. Korean J. Crop Sci., 34, 34-44 (in Korean with English abstract).
26 Myeong, S., 2018: Impact of climate change related natural disasters on rice production in South Korea. J. Korean Soc. Hazard Mitig. 18, 53-60, doi:10.9798/KOSHAM.2018.18.7.53 (in Korean with English abstract).   DOI
27 Pacanowski, R. C., and S. M. Griffies, cited 1998: MOM 3.0 manual. NOAA/GFDL [Available online at http://www.gfdl.noaa.gov/ocean-model].
28 Paulson, C. A., 1970: The mathematical representation of wind speed and temperature profiles in the unstable atmospheric surface layer. J. Appl. Meteor. Climatol., 9, 857-861, doi:10.1175/1520-0450(1970)009<0857:TMROWS>2.0.CO;2.   DOI
29 RDA, 2018: Development of production prospects and risk assessment evaluation technology for decreasing climate disaster on upland crops. National Institute of Crop Science, Rural Development Administration, 159 pp, doi:10.23000/TRKO201800043543 (in Korean).
30 Hunke, E. C., and J. K. Dukowicz, 1997: An Elastic-Viscous-Plastic model for sea ice dynamics. J. Phys. Oceanogr., 27, 1849-1867, doi:10.1175/1520-0485(1997)027<1849:AEVPMF>2.0.CO;2.   DOI
31 Chung, S.-O., 2010: Simulating evapotranspiration and yield responses of rice to climate change using FAOAquaCrop. J. Korean Soc. Agric. Eng., 52, 57-64, doi:10.5389/KSAE.2010.52.3.057 (in Korean with English abstract).   DOI
32 Ahn, J.-B., and J.-A. Lee, 2001: Numerical study on the role of sea-ice using ocean general circulation model. J. Korean Soc. Oceanogr., 6, 225-233 (in Korean with English abstract).
33 Ahn, J.-B., and J. Lee, 2015: Comparative study on the seasonal predictability dependency of boreal winter 2m temperature and sea surface temperature on CGCM initial conditions. Atmosphere, 25, 353-366, doi:10.14191/Atmos.2015.25.2.353 (in Korean with English abstract).   DOI
34 Kim, Y.-H., E.-S. Kim, M.-J. Choi, K.-M. Shim, and J.-B. Ahn, 2019: Evaluation of long-term seasonal predictability of heatwave over South Korea using PNU CGCM-WRF chain. Atmosphere, 29, 671-687, doi:10.14191/Atmos.2019.29.5.671 (in Korean with English abstract).   DOI
35 Lee, I., M.-J. Seo, M. R. Park, N.-G. Kim, G. Yi, Y.-Y. Lee, M. Kim, B. W. Lee, and H.-T. Yun, 2020: Yield and seed quality changes according to delayed harvest with rainfall treatment in soybean (Glycine max L.). Korean J. Crop Sci., 65, 353-364 (in Korean with English abstract).   DOI
36 Ahn, J.-B., and Coauthors, 2016: Changes of precipitation extremes over South Korea projected by the 5 RCMs under RCP scenarios. Asia-Pac. J. Atmos. Sci., 52, 223-236, doi:10.1007/s13143-016-0021-0.   DOI
37 Ahn, J.-B., J. Lee, and S. Jo, 2018a: Evaluation of PNU CGCM ensemble forecast system for boreal winter temperature over South Korea. Atmosphere, 28, 509-520, doi:10.14191/Atmos.2018.28.4.509 (in Korean with English abstract).   DOI
38 Ahn, J.-B., and Coauthors, 2021: Climatic yield potential of Japonica-type rice in the Korean Peninsula under RCP scenarios using the ensemble of multi-GCM and multi-RCM chains. Int. J. Climatol., 41, E1287-E1302, doi:10.1002/joc.6767.   DOI
39 Dudhia, J., 1989: Numerical study of convection observed during the Winter Monsoon Experiment using a mesoscale two-dimensional model. J. Atmos. Sci., 46, 3077-3107, doi:10.1175/1520-0469(1989)046<3077:NSOCOD>2.0.CO;2.   DOI
40 Kain, J. S., 2004: The Kain-Fritsch convective parameterization: An update. J. Appl. Meteor. Climatol., 43, 170-181, doi:10.1175/1520-0450(2004)043<0170:TKCPAU>2.0.CO;2.   DOI
41 Heo, I. H., 2006: The distribution of regional unusual temperature Korea. J. Korean Assoc. Reg. Geogr., 12, 461-474 (in Korean with English abstract).
42 Kim, C.-K., H.-K. Jeong, S.-H. Han, J.-S. Kim, and D.-H. Moon, 2013: Impacts and countermeasures of climate change on food supply in Korea. Korea Rural Economic Institute, 176 pp [Available online at https://repository.krei.re.kr/handle/2018.oak/21015].
43 Ahn, J.-B., S.-B. Lee, and S.-B. Ryoo, 2012: Development of 12-month ensemble prediction system using PNU CGCM V1.1. Atmosphere, 22, 455-464, doi:10.14191/Atmos.2012.22.4.455 (in Korean with English abstract).   DOI
44 Ahn, J.-B., K.-M. Shim, M.-P. Jung, H.-G. Jeong, Y.-H. Kim, and E.-S. Kim, 2018b: Predictability of temperature over S outh K orea in PNU CGCM and WRF h indcast. Atmosphere, 28, 479-490, doi: 10.14191/Atmos.2018.28.4.479 (in Korean with English abstract).   DOI
45 Chen, F., and J. Dudhia, 2001: Coupling an advanced land surface-hydrology model with the Penn State-NCAR MM5 modeling system. Part I: Model implementation and sensitivity. Mon. Wea. Rev., 129, 569-585, doi:10.1175/1520-0493(2001)129<0569:CAALSH>2.0.CO;2.   DOI
46 FAO, IFAD, UNICEF, WFP, and WHO, 2021: The State of Food Security and Nutrition in the World 2021. Transforming food systems for food security, improved nutrition and affordable healthy diets for all. Food and Agriculture Organization of the United Nations, 240 pp, doi:10.4060/cb4474en.