• Title/Summary/Keyword: cost matrix

Search Result 643, Processing Time 0.025 seconds

Finite Control Set Model Predictive Control with Pulse Width Modulation for Torque Control of EV Induction Motors (전기자동차용 유도전동기를 위한 유한제어요소 모델예측 토크제어)

  • Park, Hyo-Sung;Koh, Byung-Kwon;Lee, Young-il
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.65 no.12
    • /
    • pp.2189-2196
    • /
    • 2016
  • This paper proposes a new finite control set-model predictive control (FCS-MPC) method for induction motors. In the method, the reference state that satisfies the given torque and rotor flux requirements is derived. Cost indices for the FCS-MPC are defined using the state tracking error, and a linear matrix inequality is formulated to obtain a proper weighting matrix for the state tracking error. The on-line procedure of the proposed FCS-MPC comprises of two steps: select the output voltage vector of the two level inverter minimizing the cost index and compute the optimal modulation factor of the minimizing output voltage vector in order to reduce the state tracking error and torque ripple. The steady state tracking error is removed by using an integrator to adjust the reference state. The simulation and experimental results demonstrated that the proposed FCS-MPC shows good torque, rotor flux control performances at different rotating speeds.

High-Pixel-Density PenTile $Matrix^{TM}$ RGBW Displays for Mobile Applications

  • Credelle, Thomas.L.;Brown Elliott, Candice.H.
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2005.07b
    • /
    • pp.867-872
    • /
    • 2005
  • High-pixel-density displays are now under development to meet the needs of next-generation mobile devices; methods to more efficiently build such displays are described. Displays based on subpixel rendering and RGBW technologies, known as PenTile $Matrix^{TM}$ RGBW, are shown to offer the best approach to meeting the demanding requirements of low manufacturing cost, high brightness, and low power.

  • PDF

Dynamics of an Axially Moving Timoshenko Beam (축방향으로 이동하는 티모센코보의 동특성 해석)

  • Kim, Joohong;Hyungmi Oh;Lee, Usik
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2002.11a
    • /
    • pp.403-403
    • /
    • 2002
  • The use of frequency-dependent spectral element matrix (or exact dynamic stiffness matrix) in structural dynamics is known to provide very accurate solutions, while reducing the number of degrees-of-freedom to resolve the computational and cost problems. Thus, in the present paper, the spectral element model is formulated for the axially moving Timoshenko beam under a uniform axial tension. (omitted)

  • PDF

Dynamics of an Axially Moving Thermoelastic Beam-Plate (축방향으로 이동하는 열탄성 보-평판의 동특성 해석)

  • 김도연;이우식
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2003.10a
    • /
    • pp.21-28
    • /
    • 2003
  • The use of frequency-dependent spectral element matrix (or dynamic stiffness matrix) in structural dynamics may Provide very accurate solutions, while it reduces the number of degrees of freedom to improve the computational efficiency and cost problems. Thus, this paper develops a spectral element model for the coupled thermoelastic beam-plate moving with constant speed under uniform in-plane tension.

  • PDF

A Class of Singular Quadratic Control Problem With Nonstandard Boundary Conditions

  • Lee, Sung J.
    • Honam Mathematical Journal
    • /
    • v.8 no.1
    • /
    • pp.21-49
    • /
    • 1986
  • A class of singular quadratic control problem is considered. The state is governed by a higher order system of ordinary linear differential equations and very general nonstandard boundary conditions. These conditions in many important cases reduce to standard boundary conditions and because of the conditions the usual controllability condition is not needed. In the special case where the coefficient matrix of the control variable in the cost functional is a time-independent singular matrix, the corresponding optimal control law as well as the optimal controller are computed. The method of investigation is based on the theory of least-squares solutions of multi-valued operator equations.

  • PDF

Time-dependent and inelastic behaviors of fiber- and particle hybrid composites

  • Kim, Jeong-Sik;Muliana, Anastasia
    • Structural Engineering and Mechanics
    • /
    • v.34 no.4
    • /
    • pp.525-539
    • /
    • 2010
  • Polymer matrix composites are widely used in many engineering applications as they can be customized to meet a desired performance while not only maintaining low cost but also reducing weight. Polymers can experience viscoelastic-viscoplastic response when subjected to external loadings. Various reinforcements and fillers are added to polymers which bring out more complexity in analyzing the timedependent response. This study formulates an integrated micromechanical model and finite element (FE) analysis for predicting effective viscoelastic-viscoplastic response of polymer based hybrid composites. The studied hybrid system consists of unidirectional short-fiber reinforcements and a matrix system which is composed of solid spherical particle fillers dispersed in a homogeneous polymer constituent. The goal is to predict effective performance of hybrid systems having different compositions and properties of the fiber, particle, and matrix constituents. A combined Schapery's viscoelastic integral model and Valanis's endochronic viscoplastic model is used for the polymer constituent. The particle and fiber constituents are assumed linear elastic. A previously developed micromechanical model of particle reinforced composite is first used to obtain effective mechanical properties of the matrix systems. The effective properties of the matrix are then integrated to a unit-cell model of short-fiber reinforced composites, which is generated using the FE. The effective properties of the matrix are implemented using a user material subroutine in the FE framework. Limited experimental data and analytical solutions available in the literatures are used for comparisons.

Analysis on the Spatial Accessibility of Mental Health Institutions Using GIS in Gangwon-Do (GIS를 이용한 정신의료기관의 공간적 접근성 분석 - 강원도지역을 대상으로)

  • Park, Ju Hyun;Park, Young Yong;Lee, Kwang-Soo
    • Korea Journal of Hospital Management
    • /
    • v.23 no.2
    • /
    • pp.28-41
    • /
    • 2018
  • Purpose: This study purposed to analyze the spatial accessibility of mental health institutions in Ganwon-Do using Geographic Information System and to suggest policy implications. Methodology: Network analysis was applied to assess the spatial accessibility of mental health institutions in Gangwon-Do. To perform the network analysis, network data set was built using administrative district map, road network, address of mental health institutions in Gangwon-Do. After building network data set, Two network analysis methods, 1) Service area analysis, 2) Origin Destination cost matrix were applied. Service area analysis calculated accessive areas that were within specified time. And using Origin Destination cost matrix, travel time and road travel distance were calculated between centroids of Eup, Myeon, Dong and the nearest mental health institutions. Result: After the service area analysis, it is estimated that 19.63% of the total areas in Gangwon-Do takes more than 60 minutes to get to clinic institutions. For hospital institutions, 23.08% of the total areas takes more than 60 minutes to get there. And 59.96% of Gangwon-do takes more than 30 minutes to get to general hospitals. The result of Origin-Destination cost matrix showed that most Eup Myeon Dong in Gangwon-Do was connected to the institutions in Wonju-si, Chuncheon-si, Gangneung-si. And it showed that there were large regional variation in time and distance to reach the institutions. Implication: Results showed that there were regional variations of spatial accessibility to the mental health institutions in Gangwon-Do. To solve this problem, Several policy interventions could be applied such as mental health resources allocation plan, telemedicine, providing more closely coordinated services between mental health institutions and community mental health centers to enhance the accessibility.

Matrix-based Filtering and Load-balancing Algorithm for Efficient Similarity Join Query Processing in Distributed Computing Environment (분산 컴퓨팅 환경에서 효율적인 유사 조인 질의 처리를 위한 행렬 기반 필터링 및 부하 분산 알고리즘)

  • Yang, Hyeon-Sik;Jang, Miyoung;Chang, Jae-Woo
    • The Journal of the Korea Contents Association
    • /
    • v.16 no.7
    • /
    • pp.667-680
    • /
    • 2016
  • As distributed computing platforms like Hadoop MapReduce have been developed, it is necessary to perform the conventional query processing techniques, which have been executed in a single computing machine, in distributed computing environments efficiently. Especially, studies on similarity join query processing in distributed computing environments have been done where similarity join means retrieving all data pairs with high similarity between given two data sets. But the existing similarity join query processing schemes for distributed computing environments have a problem of skewed computing load balance between clusters because they consider only the data transmission cost. In this paper, we propose Matrix-based Load-balancing Algorithm for efficient similarity join query processing in distributed computing environment. In order to uniform load balancing of clusters, the proposed algorithm estimates expected computing cost by using matrix and generates partitions based on the estimated cost. In addition, it can reduce computing loads by filtering out data which are not used in query processing in clusters. Finally, it is shown from our performance evaluation that the proposed algorithm is better on query processing performance than the existing one.

Guaranteed Cost Control for Discrete-time Linear Uncertain Systems with Time-varying Delay (시변 시간지연을 가지는 이산 선형 불확실성 시스템에 대한 보장 비용 제어)

  • Kim, Ki-Tae;Cho, Sang-Hyun;Lee, Sang-Kyung;Park, Hong-Bae
    • Journal of the Institute of Electronics Engineers of Korea SC
    • /
    • v.39 no.6
    • /
    • pp.20-26
    • /
    • 2002
  • This paper deals with the guaranteed cost control problems for a class of discrete-time linear uncertain systems with time-varying delay. The uncertain systems under consideration depend on time-varying norm-bounded parameter uncertainties. We address the existence condition and the design method of the memoryless state feedback control law such that the closed loop system not only is quadratically stable but also guarantees an adequate level of performance for all admissible uncertainties. Through some changes of variables and Schur complement, It is shown that the sufficient condition can be rewritten as an LMI(linear matrix inequality) form in terms of all variables.

Meshed Acellular Dermal Matrix for Two-Staged Prepectoral Breast Reconstruction: An Institutional Experience

  • Luo, Jessica;Willis, Rhett N. Jr;Ohlsen, Suzanna M.;Piccinin, Meghan;Moores, Neal;Kwok, Alvin C.;Agarwal, Jayant P.
    • Archives of Plastic Surgery
    • /
    • v.49 no.2
    • /
    • pp.166-173
    • /
    • 2022
  • The introduction of acellular dermal matrix (ADM) to breast reconstruction has allowed surgeons to reexplore the prepectoral implant placement technique in postmastectomy breast reconstruction. Our institution adopted a novel approach using meshed ADM to lessen the financial burden of increased ADM utilization with the prepectoral breast reconstruction. This is a retrospective, single-center review of two-stage prepectoral breast reconstruction using meshed human-derived ADM for anterior prosthesis coverage. Patient demographics, oncologic data, perioperative characteristics, and complications were examined and reported as means with standard deviations. Cost-saving with the meshed technique was evaluated. Forty-eight patients (72 breasts) with a mean age of 48.5 ± 15.0 years (range 26-70 years) were included in the study. The mean follow-up time was 13.2 ± 4.4 months (range 4.1-25.8 months). Nineteen breasts (24.6%) experienced complications, with seromas being the most common complication (12.5%, n = 9). Expander removal and reoperation occurred at a rate of 8.3 and 9.7%, respectively. The average time to drain removal was 18.8 ± 6.6 days (range 8-32 days). Meshed ADM provided an average cost savings of $6,601 for unilateral and $13,202 for bilateral reconstructions. Our study found that human-derived meshed ADM can be safely used in two-staged prepectoral tissue expander-based breast reconstruction and can result in significant cost savings.