• Title/Summary/Keyword: cost breakdown system

Search Result 113, Processing Time 0.034 seconds

Establishment of WBS·CBS-based Construction Information Classification System for Efficient Construction Cost Analysis and Prediction of High-tech Facilities (하이테크 공장의 효율적 건설 사업비 분석 및 예측을 위한 WBS·CBS 기반 건설정보 분류체계 구축)

  • Choi, Seong Hoon;Kim, Jinchul;Kwon, Soonwook
    • The Journal of the Korea Contents Association
    • /
    • v.21 no.8
    • /
    • pp.356-366
    • /
    • 2021
  • The high-tech industry, a leader in the national economy, has a larger investment cost compared to general buildings, a shorter construction period, and requires continuous investment. Therefore, accurate construction cost prediction and quick decision-making are important factors for efficient cost and process management. Overseas, the construction information classification system has been standardized since 1980 and has been continuously developed, improving construction productivity by systematically collecting and utilizing project life cycle information. At domestic construction sites, attempts have been made to standardize the classification system of construction information, but it is difficult to achieve continuous standardization and systematization due to the absence of a standardization body and differences in cost and process management methods for each construction company. Particular, in the case of the high-tech industry, the standardization and systematization level of the construction information classification system for high-tech facility construction is very low due to problems such as large scale, numerous types of work, complex construction and security. Therefore, the purpose of this study is to construct a construction information classification system suitable for high-tech facility construction through collection, classification, and analysis of related project data constructed in Korea. Based on the WBS (Work Breakdown Structure) and CBS (Cost Breakdown Structure) classified and analyzed through this study, a code system through hierarchical classification was proposed, and the cost model of buildings by linking WBS and CBS was three-dimensionalized and the utilized method was presented. Through this, an information classification system based on inter-relationships can be developed beyond the one-way tree structure, which is a general construction information classification system, and effects such as shortening of construction period and cost reduction will be maximized.

Automated Methodology for Linking BIM Objects with Cost and Schedule Information by utilizing Geometry Breakdown Structure (GBS)

  • Lee, Kwangjin;Jung, Youngsoo
    • International conference on construction engineering and project management
    • /
    • 2015.10a
    • /
    • pp.637-638
    • /
    • 2015
  • There has been growing interests in life-cycle project management in the construction industry. A lot of attention is given to Building Information Modeling (BIM) which stores and uses a variety of construction information for the life cycle of project management. However, due to the additional workload arising from BIM, its expected effects versus its input costs are still under discussion in practice. As an attempt to address this issue, one of previous studies suggested an automated linking process by developing Standard Classification Numbering System (SCNS) and Geometry Breakdown Structure (GBS) to enhance the efficiency of integration process of BIM objects, cost, and schedule. Though SCNS and GBS facilitates identifying all different dataset, making object sets and linking schedule activities still needs to be manually done without having an automated tool. In this context, the purpose of this paper is to develop and validate a fully automated integration system for 3D-objects, cost, and schedule. A prototype system for single family homes (Hanok) was developed and tested in order to verify its efficiency.

  • PDF

A Model of Work Breakdown Structure for being applied to Historical Data in BTL Project for Educational Facilities (교육시설 BTL 사업의 실적공사비 적용을 위한 작업분류체계(WBS) 구축)

  • Kim, Sung-Kyum;Cho, Chang-Yeon;Son, Jae-Ho;Kim, Jae-On
    • Proceedings of the Korean Institute Of Construction Engineering and Management
    • /
    • 2007.11a
    • /
    • pp.499-502
    • /
    • 2007
  • The government abolished the existing method to calculate the construction price by the quantity take-off and pricing. It has introduced a new estimating system which uses the actual cost data on the basis of actual contract unit price. However, in the case of the current method to calculate the estimate price of BTL educational facilities, it is difficult to prepare an accurate ground for calculating unit prices due to a lack of standardized work breakdown structure (WBS) and guidelines for the detailed bidding documents. Thus, this research aims to establish WBS using the actual construction price on the basis of the actual bidding documents for the previous construction of BTL educational facilities. This specific WBS can be differentiated from the general WBS which is not suited for construction of the educational facility. It makes possible to build the construction information classification system and it helps to systemize the maintenance and repair cost items.

  • PDF

Prediction/Investment Cost Analysis for korea High-Speed Railway System (한국형 고속전철 시스템의 추정/투입비용 분석)

  • Lee, Tae-Hyeong;Park, Chun-Su
    • 시스템엔지니어링워크숍
    • /
    • s.1
    • /
    • pp.60-64
    • /
    • 2003
  • In this study, we have analyzed the cost of korea high-speed railway system. The predicted cost in planning phase and adjustment data to 5th year are collected. Then, predicted cost is compared with adjustment in year/item/system base. We make a project history table for criteria to review project history and research & development activity. We have developed CBS(cost breakdown structure) and allocated adjustment data to them. It is shown that cost prediction related to research & development activity in planning phase is relatively correct.

  • PDF

Development of Project Management System for Geothermal Well Construction (지열발전 시추공 구축 프로젝트관리시스템 개발)

  • Kim, Kwang-Yeom;Lee, Seung-Soo
    • New & Renewable Energy
    • /
    • v.8 no.3
    • /
    • pp.38-46
    • /
    • 2012
  • Enhanced Geothermal System (EGS) among geothermal system types enables to produce sustainable energy even in non-volcanic region while conventional geothermal energy has been restricted to obtain only from hot and permeable formation such as in volcanic regions. Successful EGS project in terms of economy, however, can be expected only when the project is managed effectively considering most of influencing factors (e.g., tangible and intangible resources, cost, time, risks, etc.). In particular, well construction is of the utmost importance in geothermal project as it dominantly influences on time and cost in the whole project. Therefore, when it comes to viable geothermal project without abundant experience, managing drilling economically and efficiently is inevitable. In this study, a project management system for well construction in geothermal project based on project control system including work breakdown structure and cost account was developed to predict and assess the performance of drilling and to visualize the progress.

Analysis of Boundary Conditions for Cost Breakdown Structure in the Construction and Maintenance phase (시공단계와 유지관리단계 비용분류체계의 경계조건 분석)

  • Jeong, Jae-Hyuk;Shin, Han-Woo;Kim, Tae-Hui
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2012.05a
    • /
    • pp.21-23
    • /
    • 2012
  • The process of building project for planning, designing, construction, maintenance, and waste disposal are related with each other. However, we have a difficulty for estimating building's LCC due not to be flexible each other. Therefore, we analyzed the boundary condition between the process of construction and maintenance, and analyzed the factor of segment. We also suggested the Link System for flexible relation.

  • PDF

Life Cycle Cost Analysis for Korea High-Speed Rail Project (한국형 고속전철 시스템의 비용분석)

  • 이태형;목진용;박춘수
    • Proceedings of the KSR Conference
    • /
    • 2002.10a
    • /
    • pp.376-381
    • /
    • 2002
  • In this study, we have analyzed the cost of korea high-speed rail project. The predicted cost in planning phase and adjustment data to 5th year are collected. Then, predicted cost is compared with adjustment in year/item/system base. We make a project history table for criteria to review project history and research & development activity. We have developed CBS(cost breakdown structure) and allocated adjustment data to them. It is shown that cost prediction related to research St development activity in planning phase is relatively correct.

  • PDF

Breakdown Characteristics of $SF_6$ Gas under Particle Contaminated Conditions (금속입자 오손시 $SF_6$가스의 절연파괴특성)

  • Kim, Min-Kyu;Moon, In-Wook;Kim, Ik-Soo;Lee, Hyeong-Ho
    • Proceedings of the KIEE Conference
    • /
    • 1995.11a
    • /
    • pp.465-468
    • /
    • 1995
  • The gas-insulated switchgear(GIS) has made high-reliability, high-safety, compact substations possible by using $SF_6$ gas. They are likely to be further developed toward higher voltages and targer capacities, along with greater compactness and lower cost. Although $SF_6$ gas has excellent insulation performance, breakdown voltages are reduced by the conducting particles. Thus, extensive studies have been made on the breakdown characteristics of $SF_6$ gas in particle contaminated conditions. Experiments were carried out for fired particle and free particle in a coaxial electrode system with DC and AC voltages. This paper represents the experimental results of the processes involved in electrical breakdown in compressed $SF_6$ gas, where breakdown is initiated by conducting particles.

  • PDF

The Life Cycle Cost Estimation for Domestic Products Motor Block of KTX-1 Considering Periodic Maintenance (유지보수정보 주기를 고려한 KTX-1 모터블럭 개발품의 수명주기비용 예측)

  • Yun, Cha-Jung;Noh, Myoung-Gyu;Kim, Jae-Moon
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.62 no.2
    • /
    • pp.288-292
    • /
    • 2013
  • This paper presents the result of life-cycle cost (LCC) estimation for domestic products propulsion control system (motor block unit) of KTX-1 considering periodic maintenance. Life cycle costing is one of the most effective approaches for the cost analysis of long-life systems such as the KTX-1. Life cycle costing includes the cost of concept design, development, manufacture, operation, maintenance and disposal. To estimate LCC for domestic products motor block unit, it was analyzed physical breakdown structure (PBS) on motor unit in view of maintenance cost and unit cost etc. As a results, life cycle cost on motor block unit increased moderately expect for periodical time when major parts are replaced at the same time. hereafter this results will be reflected in the domestic products being developed.

A Study on Life Cycle Cost on Railway Locomotive Systems

  • Egamberdiev, Bunyod;Lee, Kookchan;Lee, Jongwoo;Burnashev, Shamil
    • International Journal of Railway
    • /
    • v.9 no.1
    • /
    • pp.10-14
    • /
    • 2016
  • Life cycle cost analysis is compulsively required for the system operation. System operation costs are consisted of acquisition, operation, maintenance and so on. In the beginning of the system planning, we need to take into account of various costs following the system operating. To implement LCC, we need to analyze system life cycle to identify all costs during system life. The costs can be divided into three parts. The first part is purchasing cost, the second for operating cost and the last for disposal cost. The second operating cost can be decomposed of operating cost included labor, energy consumption cost for system running, maintenance costs to keep systems healthy, delay cost caused from maintenance and hazard cost, and so on. In this paper, we carried out for railway locomotives which operate over more 30years and which cost about 10 million USD. We decompose the life cycle of the locomotives and break down the locomotives into subsystems to require maintenance or not, and subsystems to need energy or not. We showed how to decide optimal locomotives through cost identification and system breakdown.