• Title/Summary/Keyword: cosine hyperbolic function

Search Result 10, Processing Time 0.025 seconds

GEOMETRIC PROPERTIES OF STARLIKENESS INVOLVING HYPERBOLIC COSINE FUNCTION

  • Om P. Ahuja;Asena Cetinkaya;Sushil Kumar
    • Communications of the Korean Mathematical Society
    • /
    • v.39 no.2
    • /
    • pp.407-420
    • /
    • 2024
  • In this paper, we investigate some geometric properties of starlikeness connected with the hyperbolic cosine functions defined in the open unit disk. In particular, for the class of such starlike hyperbolic cosine functions, we determine the lower bounds of partial sums, Briot-Bouquet differential subordination associated with Bernardi integral operator, and bounds on some third Hankel determinants containing initial coefficients.

COEFFICIENT INEQUALITIES FOR A UNIFIED CLASS OF BOUNDED TURNING FUNCTIONS ASSOCIATED WITH COSINE HYPERBOLIC FUNCTION

  • Gagandeep Singh;Gurcharanjit Singh;Navyodh Singh;Navjeet singh
    • The Pure and Applied Mathematics
    • /
    • v.31 no.2
    • /
    • pp.201-216
    • /
    • 2024
  • The aim of this paper is to study a new and unified class 𝓡αCosh of analytic functions associated with cosine hyperbolic function in the open unit disc E = {z ∈ ℂ : |z| < 1}. Some interesting properties of this class such as initial coefficient bounds, Fekete-Szegö inequality, second Hankel determinant, Zalcman inequality and third Hankel determinant have been established. Furthermore, these results have also been studied for two-fold and three-fold symmetric functions.

An Improvement of Performance for Cascade Correlation Learning Algorithm using a Cosine Modulated Gaussian Activation Function (코사인 모듈화 된 가우스 활성화 함수를 사용한 캐스케이드 코릴레이션 학습 알고리즘의 성능 향상)

  • Lee, Sang-Wha;Song, Hae-Sang
    • Journal of the Korea Society of Computer and Information
    • /
    • v.11 no.3
    • /
    • pp.107-115
    • /
    • 2006
  • This paper presents a new class of activation functions for Cascade Correlation learning algorithm, which herein will be called CosGauss function. This function is a cosine modulated gaussian function. In contrast to the sigmoidal, hyperbolic tangent and gaussian functions, more ridges can be obtained by the CosGauss function. Because of the ridges, it is quickly convergent and improves a pattern recognition speed. Consequently it will be able to improve a learning capability. This function was tested with a Cascade Correlation Network on the two spirals problem and results are compared with those obtained with other activation functions.

  • PDF

Linear Bipolar OTAs Employing Hyperbolic Function Circuits and Triple-Tail Cell

  • Matsumoto, Fujihiko;Noguchi, Yasuaki
    • Proceedings of the IEEK Conference
    • /
    • 2002.07b
    • /
    • pp.763-766
    • /
    • 2002
  • This paper proposes design of new linear bipolar OTAs composed of an hyperbolic function circuit and a triple-tail cell. Two types of the OTAs are presented; one employs a hyperbolic sine circuit and the other contains a hyperbolic cosine circuit. The linear input voltage ranges of the proposed OTAs are wider than that of the conventional triple-tail cell, though the power dissipation is smaller. The results of SPICE simulation show that satisfactory characteristics are obtained.

  • PDF

CERTAIN FORM OF HILBERT-TYPE INEQUALITY USING NON-HOMOGENEOUS KERNEL OF HYPERBOLIC FUNCTIONS

  • Santosh Kaushik;Satish Kumar
    • Korean Journal of Mathematics
    • /
    • v.31 no.2
    • /
    • pp.189-201
    • /
    • 2023
  • In this article, we establish Hilbert-type integral inequalities with the help of a non-homogeneous kernel of hyperbolic function with best constant factor. We also study the obtained inequalities's equivalent form. Additionaly, several specific Hilbert's type inequalities with constant factors in the term of the rational fraction expansion of higher order derivatives of cotangent and cosine functions are presented.

ON THE SUPERSTABILITY OF SOME PEXIDER TYPE FUNCTIONAL EQUATION II

  • Kim, Gwang-Hui
    • The Pure and Applied Mathematics
    • /
    • v.17 no.4
    • /
    • pp.397-411
    • /
    • 2010
  • In this paper, we will investigate the superstability for the sine functional equation from the following Pexider type functional equation: $f(x+y)-g(x-y)={\lambda}{\cdot}h(x)k(y)$ ${\lambda}$: constant, which can be considered an exponential type functional equation, the mixed functional equation of the trigonometric function, the mixed functional equation of the hyperbolic function, and the Jensen type equation.

Approximation of Polynomials and Step function for cosine modulated Gaussian Function in Neural Network Architecture (뉴로 네트워크에서 코사인 모듈화 된 가우스함수의 다항식과 계단함수의 근사)

  • Lee, Sang-Wha
    • Journal of the Institute of Electronics Engineers of Korea CI
    • /
    • v.49 no.2
    • /
    • pp.115-122
    • /
    • 2012
  • We present here a new class of activation functions for neural networks, which herein will be called CosGauss function. This function is a cosine-modulated gaussian function. In contrast to the sigmoidal-, hyperbolic tangent- and gaussian activation functions, more ridges can be obtained by the CosGauss function. It will be proven that this function can be used to aproximate polynomials and step functions. The CosGauss function was tested with a Cascade-Correlation-Network of the multilayer structure on the Tic-Tac-Toe game and iris plants problems, and results are compared with those obtained with other activation functions.

The new approach to maxillary and mandibular anterior dental arch forms - In Korean normal occlusion models (상하악 전치부 치열궁 형태에 대한 새로운 접근 - 한국성인 정상교합자 모델에서)

  • Ha, Man-Hee;Son, Woo-Sung;Yang, Hoon-Chul
    • The korean journal of orthodontics
    • /
    • v.31 no.3 s.86
    • /
    • pp.347-355
    • /
    • 2001
  • Maxillary and mandibular anterior dental arches often have the problems of occlusal relation and esthetics by malformations of teeth, congenital missing, et at. Though the clinician usually use the anterior ratio to overcome this problems, he has the limitation of a direct application this ratio to the prediction of anterior occlusal relationship by the change of anterior ratio as dental arch form, intercanine width, segment depth and arch perimeter. So this study examine maxillary and mandibular anterior dental arch forms by least square method using Korean normal occlusion models(man : 20 casts, woman : 20 casts). Maxillary and mandibular anterior dental arches of Korean normal occlusion models are curve fitted to polynomial function, beta function, hyperbolic cosine function in order. And this accuracy of curve fitting is constant regardless of man/woman and maxilla/mandible. The relationships between intercanine width, segment depth, and arch perimeter based on this owe fitted dental arch form are acquired. This relationships will give the prediction of anterior dental arch form and the information of more accurate anterior ratio according to intercanine width.

  • PDF

Hybrid finite element model for wave transformation analysis (파랑 변형 해석을 위한 복합 유한요소 모형)

  • Jung Tae Hwa;Park Woo Sun;Suh Kyung Duck
    • Proceedings of the KSME Conference
    • /
    • 2002.08a
    • /
    • pp.209-212
    • /
    • 2002
  • Since Berkhoff proposed the mild-slope equation in 1972, it has widely been used for calculation of shallow water wave transformation. Recently, it was extended to give an extended mild-slope equation, which includes the bottom slope squared term and bottom curvature term so as to be capable of modeling wave transformation on rapidly varying topography. These equations were derived by integrating the Laplace equation vertically. In the present study, we develop a finite element model to solve the Laplace equation directly while keeping the same computational efficiency as the mild-slope equation. This model assumes the vertical variation of wave potential as a cosine hyperbolic function as done in the derivation of the mild-slope equation, and the Galerkin method is used to discretize . The computational domain was discretized with proper finite elements, while the radiation condition at infinity was treated by introducing the concept of an infinite element. The upper boundary condition can be either free surface or a solid structure. The applicability of the developed model was verified through example analyses of two-dimensional wave reflection and transmission. .

  • PDF

Hybrid Element Model for Wave Transformation Analysis (파랑 변형 해석을 위한 복합 요소 모형)

  • 정태화;박우선;서경덕
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.15 no.3
    • /
    • pp.159-166
    • /
    • 2003
  • In this study, we develop a finite element model to directly solve the Laplace equation while keeping the same computational efficiency as the models based on the extended mild-slope equation which has been widely used for calculation of wave transformation in shallow water. For this, the computational domain is discretized into finite elements with a single layer in the vertical direction. The velocity potential in the element is then expressed in terms of the potentials at the nodes located at water surface, and the Galerkin method is used to construct the numerical model. A common shape function is adopted in horizontal direction, and the cosine hyperbolic function in vertical direction, which describes the vertical behavior of progressive waves. The model was developed for vertical two-dimensional problems. In order to verify the developed model, it is applied to vertical two-dimensional problems of wave reflection and transmission. It is shown that the present finite element model is comparable to the models based on extended mild-slope equations in both computational efficiency and accuracy.