• Title/Summary/Keyword: corrugated

Search Result 2,387, Processing Time 0.051 seconds

Strength Property Improvement of OCC-based Paper by Various Mechanical and Chemical Treatments of its Fiber (골판지 고지의 물리화학적 처리에 의한 강도향상)

  • Seo, Yung B.;Lee, Jong Hoon
    • Korean Journal of Agricultural Science
    • /
    • v.26 no.1
    • /
    • pp.21-30
    • /
    • 1999
  • To increase the strength properties of recycled fiber, especially OCC (Old Corrugated Container) in this study, we used the mechanical pretreatment on the fibers before refining. The mechanical action in the Hobart mixer induced high shear and compression on the fibers, which resulted in the breakdowns of fiber internal structure, and microcompressions on the surface of the fibers. We evaluated the degree of mechanical treatment by fiber curl index. Four different refining techniques were applied to the pretreated fibers (Valley beater, Kady mill, PFI mill, and Impact refining) to find the best combination of the pretreatment and the refining methods. Conclusions were summarized as followed. 1. In keeping the fiber length from shortening, Kady mill and PFI mill refining were effective. Kady mill and Valley beater application tended to straighten out the fiber shapes. 2. Valley beating increased the breaking length of the handsheets better than other methods, while lowering the tear strength most. The mechanical pretreatment increased breaking length about 10% in average irrespective of four different refining methods. 3. Tear strength was increased by the mechanical pretreatment and by the PFI mill refining. 4. Burst strength was increased by the mechanical pretreatment and by valley beating method. 5. In increasing the breaking length and burst strength while keeping tear strength, combination of mechanical pretreatment and Valley beating were most effective.

  • PDF

Patterns of Tannin Accumulation in Leaves of C-4 Euphorbia maculata (C-4 Euphorbia maculata 엽육조직 내 탄닌물질의 축적 양상)

  • Kim, In-Sun
    • Applied Microscopy
    • /
    • v.33 no.3
    • /
    • pp.233-241
    • /
    • 2003
  • Patterns of tannin accumulation in leaves of C-4 Euphorbia maculata have been examined using electron microscopy. Tannins, which are secondary metabolite phenolic compounds, were found to be deposited conspicuously in vacuoles of certain tissues regardless of their stage in development. However, patterns of deposit accumulation were distinguishable by their cell type during leaf differentiation. The deposits appeared most concentrated in the concentric bundle sheath cells enclosing veins, while little or no density was detected mostly in the mesophyll cells close to the epidermis. An ultrastructural study revealed that the deposits were restricted to the vacuoles at an early stage of leaf development; during which the vacuoles were almost completely filled with the tanniferous substances. The deposits themselves took different forms ranging from granules to huge globules while expanding leaf blade. As the leaf matured, the deposits accumulated either centripetally adjacent to the inner tangential tonoplast or by penetration into the cytoplasm amongst various cellular organelles, resulting in an extremely dense cytoplasm. Electron micrographs frequently showed the delineation of each organelle by the presence of dense deposits within the cytoplasm. Some large depository vacuoles filled with tannins had a corrugated appearance on the sectioned surface. The pattern and potential role of the deposits have been discussed.

Study of Pressure Cooling of Agricultural Products Using a Pallet Bin (팔레트 빈(pallet bin)을 이용한 농산물의 차압통풍 냉각 연구)

  • Jeong, Hoon;Yun, Hong-Sun;Lee, Hyun-Dong;Kim, Young-Keun;Lee, Won-Ok
    • Food Science and Preservation
    • /
    • v.15 no.6
    • /
    • pp.847-851
    • /
    • 2008
  • The handling and processing of agricultural products in Korea is done manually. Small plastic boxes, nets, and corrugated cardboard boxes are used as containers during harvesting, sorting and other product handling operations. However, these practices are labor-intensive, time-consuming, require various kinds of packing materials, and are expensive because of high operating costs. To overcome these problems, the use of pallet bins with pre-cooling and storage features for handling and processing bulk farm products was investigated. The airflow resistances through bulk potato, onion and mandarin stocks were measured, and the pallet bins and a pressure pre-cooling device were manufactured. The opening ratio, bed depth and airflow rate through bulk potato, onion and mandarin in the pallet bin were defined with regression equations. The cooling rates of bulk potato, onion and mandarin were 0.8C/h ($21.7{\rightarrow}0C$, 14.5 h), 0.4C/h ($15.4{\rightarrow}.0C$, 32.2 h) and 0.7C/h ($13.7{\rightarrow}C$, 18.8 h), respectively, with the pressure pre-cooling system. Temperature deviances for storage of bulk potato, onion and mandarin were 0.12C, 0.12C and 0.17C, respectively.

Study on Development of Export Packaging for Fresh Melon (신선 멜론의 수출포장개발에 관한 연구)

  • Lee, Myung-Hoon;Jung, Jun-Jae
    • KOREAN JOURNAL OF PACKAGING SCIENCE & TECHNOLOGY
    • /
    • v.15 no.3
    • /
    • pp.83-91
    • /
    • 2009
  • It is very difficult to export the fresh agricultural products to long distance countries such as USA and EU without any damage. Fresh products exporting would overcome very severe conditions such as hot and cold weather changes, heavy vibrations with rolling and pitching during the target distribution period, therefore, the packaging needs the immobility of products in the container and the keeping its quality by packaging materials or methods under any surrounding environments, especially. The physical strength of outer box should be designated according to its own characteristics for agricultural product packaging. Packaging dimension which would be fit to standard pallet is also very important factor to reduce the distribution cost. There have been many agricultural products researches for export packaging to the USA so far. However they have never got desirable results which enough to apply it in real. The main purpose of this research is to develop optimum compressive strength and optimum dimension of corrugated fiberboard box which would be used to USA export packaging of fresh melon as well as Japan.

  • PDF

Growth and Yield of Spring-Grown Potato under Recycled-Paper Mulching

  • Cui, Ri-Xian;Lee, Byun-Woo;Lee, Hac-Lae
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.46 no.2
    • /
    • pp.150-156
    • /
    • 2001
  • To explore the feasibility of recycled paper mulching in spring-grown potato the changes of soil environments and the growth and yield of potato under non-mulched control and three mulching treatments of recycled paper (RPM), transparent polyethylene film (TPFM), and black polyethylene film (BPFM) were examined over two spring seasons in 1998 and 1999 at Suwon, Korea. The mulching materials were a recycled mulch paper with 110 g/$m^2$ and a thickness of 0.1mm, which was manufactured from old corrugated containers for this experiment and the commercial polyethylene films with a thickness of 0.01mm. RPM lowered the average soil temperature at 5-cm depth during the potato growing period by 03$^{\circ}C$ compared with the control, whereas TPFM and BPFM raised it by 2.$0^{\circ}C$, and 1.8$^{\circ}C$, respectively. On a sunny day during sprout emergence, RPM reduced the maximum soil temperature by about 5$^{\circ}C$, while TPFM and BPFM enhanced it by about 11$^{\circ}C$ and 6.$0^{\circ}C$, respectively. The temperature difference between the control and the mulching treatments decreased with the development of canopy. All the mulching treatments had an advantage in preserving the soil moisture over the control. RPM and BPFM resulted in the effective control of weed by obstructing light transmission onto soil surface, but TPFM had no control effect of weed. Sprout emergence started two to three days earlier in TPFM and BPFM, but one day later in RPM than in the control due to the altered soil temperature by the mulching treatments. However, the final percentage of emergence was notably lower in TPFM than that in the control because of too high soil temperature during daytime, but was not different among the control, RPM, and BPFM. During the early stage of potato growth, the shoot and root growth under RPM was lower compared with the control, but afterwards, RPM outpaced the control. In 1998 experiment, the tuber yield under RPM and BPFM were significantly higher than those of the control and TPFM. In 1999 experiment, there was no significant difference in tuber yield between RPM and the control.

  • PDF

A Study on Thermal Performance Comparison between Large and Small Sized Plate Heat Exchanger (판형 열교환기 크기에 따른 전열성능 비교에 관한 연구)

  • Park, Jae-Hong
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.21 no.2
    • /
    • pp.528-534
    • /
    • 2020
  • The early development and use of plate heat exchangers (PHE) were in response to stringent statutory requirements from dairy products in the late 19th century, but PHEs were not exploited commercially until the 1920s. Since then, although the basic concept of PHEs has changed little, its design and construction have progressed significantly to accommodate higher temperatures and pressures, as well as large heat exchanging capacities. The development of current chevron-type corrugated heat plates has been ongoing since the oil shock in the 1970s to improve energy efficiency. The development trend of PHEs is consistent with the development of larger heat plates with better thermal efficiency, lower pressure drop, and good flow distribution. In this study, the thermal performance of small heat plates (PHE-S) and large heat plates (PHE-L) with the same plate depth and corrugation pitch were analyzed experimentally for each channel (H, M, and L type) to suggest development directions of heat plates. The test results showed that for the convectional heat transfer coefficient, the PHE-S was on average, 16.5% higher in the H type, 25% higher in the M type, and 40% higher in the L type than PHE-L. In the case of the pressure drop, the PHE-S was 19% higher in the H type, 46% higher in the M type, and 61% higher in the L type than PHE-L. These results were attributed to the differences in fluid distribution areas between the PHE-S and PHE-L, among other potential causes.

Study of Pallet Scale Modified Atmosphere Packaging Films for Reducing Water Condensation

  • Kim, Jinse;Park, Jong Woo;Park, Seokho;Choi, Dong Soo;Choi, Seung Ryul;Kim, Yong Hoon;Lee, Soo Jang;Park, Chun Wan;Lee, Jung- Soo;Cho, Byoung-Kwan
    • Journal of Biosystems Engineering
    • /
    • v.41 no.2
    • /
    • pp.98-107
    • /
    • 2016
  • Purpose: The aim of this study was to find an appropriate polymer film, which could reduce the water condensation for pallet-size modified atmosphere packaging (MAP). Methods: Five different types of films were selected from several commercialized films. Prior to the real food storage test, plastic boxes with wetted plastic balls were used to simulate the high humidity conditions of real food storage. The initial MAP condition was 5% oxygen and 95% nitrogen, and the $O_2$ concentration, the relative humidity and water condensation inside the films were checked on a daily basis. The MAP test for tomatoes was conducted by using the most appropriate film from the five films examined in this study. Results: Every film except Mosspack(R) indicated a similar variation in the $O_2$ concentration over the course of time. The relative humidity near the surfaces of all the films except nylon-6 approached saturation conditions over time. For three kinds of films, namely, low-density polyethylene (LDPE) film, anti-fogging oriented polypropylene (AFOPP) film, and Mosspack(R), the inner surfaces of the films were fully covered with dew after a storage period of a day. Conversely, an area of 4.5% was covered with dew in the case of the poly lactic acid (PLA) film, and there was no dew inside the nylon-6 film. The pallet-size MAP test for tomatoes was conducted by using the nylon-6 film and there was no water condensation inside the nylon-6 film over three weeks of storage. Conclusions: During the pallet scale MAP, water condensation could cause severe fungal infection and wetting of the corrugated box. Hence, it was important to minimize water condensation. This study showed that the MAP films with high WVTR such as nylon-6 and PLA could reduce the water condensation inside the pallet scale MAP.

Sanitary Control of Aquarium Tank Water with U.V. Light (자외선을 이용한 활어용 수조수의 위생 대책 수립)

  • CHOI Seung-Tae;PARK Mi-Yeon;CHANG Dong-Suck
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.28 no.4
    • /
    • pp.428-434
    • /
    • 1995
  • The purpose of this study is to develop a sanitary aquarium for the safety slices of raw fish by using U.V. light. Water re-circulating system was composed of two tanks. One of the tanks $(90\times45\times45cm\;in\;size),$ was used for rearing fish and the other $(90\times45\times45cm\;in\;size),$ with 37 pieces of corrugated plastic plates was used for the growth of Nitrosomonas and Nitrobacter to remove ammonia from the water. Consequently, bactericidal effects of U.V. light were examined under the controlled condition of water with flow rate 730m1/sec (water flow thickness: 10mm), the width 41cm of water flow route, and the distance 4.75cm from the lamp to its water bottom, and U.V. light 75W (5 lamps). The water of the aquarium tank will be theroetically circulated 1 cycle per 18 min. In these conditions the bactericidal effect was $85\%$ just after passing through U,V. light and 3 log cycle in aquarium tank water. The count of Vibrio parahaemolyticus just after irradiation was decreased by about over than 3 log cycle. Under the irradiation for 72 hours, viable cell counts in both skin and gill of fish reared were decreased into about 2 log cycle, but there was no significant decrease in viscera. When the temperature of the tank was controlled at about $20-23^{\circ}C$ under the same condition, viable cell counts were reduced about 2 log cycle, and fecal coliforms were reduced about 1 log rycle and 3 log cycle in Crassostrea gigas and Mytilus edulis, respectively.

  • PDF

Development of Wastewater Treatment and Recycle Technology Using a Tubular Ceramic Ultrafiltration Membrane 1, Effect of Periodic Backflushing (관형 세라믹 한외여과막을 사용한 폐수처리 및 재활용기술개발 : 1, 주기적 역세척 효과)

  • 박진용
    • Membrane Journal
    • /
    • v.9 no.3
    • /
    • pp.178-184
    • /
    • 1999
  • A periodic backflushing was performed to reduce the membrane fouling of ultrafiltration for wastewater, and the effect and the optimum condition were investigated in this study. The alumina¬ceramic tubular membrane with pore size of 0.02${\mu}m$ was used for the wastewater treated by coagulation and sedimentation from two paper plants, of which A plant made toilet paper by recycling milk paper cartons and B plant recycled corrugated cardboards. And the effect of periodic backflushing to membrane fouling and quality of permeate were studied with a constant backflushing time of 3 sec. As results of measuring SS, TDS, and COD of source and permeate, the rejection rate of SS showed the highest value at the backflushing period of 15 see, which was the shortest time in these experiments, in case of waste¬water discharged from A plant. However, the rejection rate of COD had the highest value at the period of 30 sec for wastewater from both A and B plant. Then, the rejection rate of TDS was almost same at 30 and 60 sec for A plant wastewater, and the highest at 60 see for B plant. The effect of periodic back¬flushing to membrane fouling was investigated by change of permeate flux according to operating time. The permeate flux decreased slowly at the operation with backflushing, and was higher compared with that without backflushing in both case of A and B wastewater. But, the optimum period with the highest flux of A wastewater was different from that of B, because SS and COD of A was higher than those of Band TDS of B was higher than that of A.

  • PDF

Deflection Evaluation of the Constructing-load Carrying Capacity for Deep Decking Floor System Reinforced with Both Ends Cap Plates (캡 플레이트로 단부 보강한 춤이 깊은 데크의 시공중 처짐성능평가)

  • Jeon, Sang Hyun;Kyung, Jae Hwan;Kim, Young Ho;Choi, Sung Mo;Yang, Il Seung
    • Journal of Korean Society of Steel Construction
    • /
    • v.27 no.2
    • /
    • pp.155-167
    • /
    • 2015
  • If of application of the deep deckting floor in long span more than 6m, the deflection caused by the construction load occurred high. Because the constructing-works and safety by this deflection, take actually supports to laborers working on the deck. However, installed supports are having difficultly such as the restricted passage, deficiency of working space, and lowering of efficiency. And toward-opening deck is seen as local buckling of web plate, flexural-torsional buckling, and gradually opening of corrugated decking. In this study, we will suggest a deep decking floor system that reinforced with both ends cap plates for toward-opneing decking change from opening to closing. The constructing deflection of a deep decking more than 6m must be satified 30mm and L/180 as proposed. Full-scale field tests loading by sand conducted a deep decking reinforced with and without cap plate. In conclusion, the specimen reinforced with cap plates have shown that to ensure the negative moment $wl^2/18$. And constructing-deflection of deep decking shown that to satisfy the evaluation value (L/180 or 30mm).