• Title/Summary/Keyword: corrosion test loop

Search Result 24, Processing Time 0.03 seconds

$Co_2$ Corrosion Mechanism of Carbon Steel in the Presence of Acetate and Acetic Acid

  • Liu, D.;Fu, C.Y.;Chen, Z.Y.;Guo, X.P.
    • Corrosion Science and Technology
    • /
    • v.6 no.5
    • /
    • pp.227-232
    • /
    • 2007
  • The corrosion behavior of carbon steel (N80) in carbon dioxide saturated 1%NaCl solution with and without acetic acid or acetate was investigated by weight-loss test, electrochemical methods (polarization curve, Electrochemical impedance spectroscopy). The major objective is to make clear that the effect of acetic acid and acetate on the corrosion of carbon steel in $Co_2$ environments. The results indicate that either acetic acid or acetate accelerates cathodic reducing reaction, facilitates dissolution of corrosion products on carbon steel, and so promotes the corrosion rate of carbon steel in carbon dioxide saturated NaCl solution. All Nyquist Plots are consisting of a capacitive loop in high frequency region, an inductive loop in medial frequency region and a capacitive arc in low frequency region. The high frequency capacitive loop, medial frequency inductive loop and low frequency capacitive arc are corresponding to the electron transfer reaction, the formation/adsorption of intermediates and dissolution of corrosion products respectively. All arc of the measured impedance reduced with the increase of the concentration of Ac-, especially HAc. However, the same phenomenon is not notable after reducing pH value by adding HCl. HAc is a stronger proton donor and can be reduced directly by electrochemical reaction firstly. Ac- can't participate in electrochemistry reaction directly, but $Ac^-$ an hydrate easily to create HAc in carbon dioxide saturated environments. HAc is as catalyst in $Co_2$ corrosion. As a result, the corrosion rate was accelerated in the presence of acetate ion even pH value of solution increased.

Development of a gamma irradiation loop to evaluate the performance of a EURO-GANEX process

  • Sanchez-Garcia, I.;Galan, H.;Nunez, A.;Perlado, J.M.;Cobos, J.
    • Nuclear Engineering and Technology
    • /
    • v.54 no.5
    • /
    • pp.1623-1634
    • /
    • 2022
  • A new irradiation loop design has been developed, which provides the ability to carry out radiolytic resistance studies of extraction systems simulating process relevant conditions in an easy and simple way. The step-by-step loop configuration permits an easy modification of settings and has a relative low volume requirement. This irradiation loop has been initially set up to test the main EURO-GANEX process steps: the lanthanide (Ln) and actinide (An) co-extraction followed by the transuranic (TRU) stripping. The performance and changes in the composition have been analyzed during the irradiation experiment by different techniques: gamma spectroscopy and ICP-MS for the extraction and corrosion behavior of the full system, and HPLC-MS and Raman spectroscopy to determine the degradation of the organic and aqueous solvents, respectively. The Ln and An co-extraction step and the corrosion that occurred during the first irradiation step revealed the favorable expected results according to literature. The effects of acidity changes occurred during the irradiation process, the presence of stainless corrosion products in solution as well as the new possible degradation compounds have been explored in the An stripping step. The results obtained demonstrate the importance of developing realistic irradiation experiments where different factors affecting the performance can be easily studied and isolated.

Primary Water Stress Corrosion Crack Growth Rate Tests for Base Metal and Weld of Ni-Cr-Fe Alloy (니켈 합금 모재 및 용접재의 일차수응력부식균열 균열성장속도 시험)

  • Lee, Jong Hoon
    • Corrosion Science and Technology
    • /
    • v.18 no.1
    • /
    • pp.33-38
    • /
    • 2019
  • Alloy 600/182 with excellent mechanical/chemical properties have been utilized for nuclear power plants. Although both alloys are known to have superior corrosion resistance, stress corrosion cracking failure has been an issue in primary water environment of nuclear power plants. Therefore, primary water stress corrosion crack (PWSCC) growth rate tests were conducted to investigate crack growth properties of Alloy 600/182. To investigate PWSCC growth rate, test facilities including water chemistry loop, autoclave, and loading system were constructed. In PWSCC crack growth rate tests, half compact-tension specimens were manufactured. These specimens were then placed inside of the autoclave connected to the loop to provide primary water environment. Tested conditions were set at temperature of $360^{\circ}C$ and pressure of 20MPa. Real time crack growth rates of specimens inside the autoclave were measured by Direct Current potential drop (DCPD) method. To confirm inter-granular (IG) crack as a characteristic of PWSCC, fracture surfaces of tested specimens were observed by SEM. Finally, crack growth rate was derived in a specific stress intensity factor (K) range and similarity with overseas database was identified.

Effect of Aging Time on the Resistance to Localized Corrosion of the Hyper Duplex Stainless Steel

  • Jeon, Soon-Hyeok;Kim, Soon-Tae;Lee, In-Sung;Kim, Ji-Soo;Kim, Kwang-Tae;Park, Yong-Soo
    • Corrosion Science and Technology
    • /
    • v.9 no.5
    • /
    • pp.209-215
    • /
    • 2010
  • To elucidate the effect of aging time on resistance to localized corrosion of hyper duplex stainless steel, a double-loop electrochemical potentiokinetic reactivation test a potentiodynamic anodic polarization test, a scanning electron microscope-energy dispersive spectroscope analysis, and a thermodynamic calculation were conducted. With an increase in aging time, sigma phases are precipitated much more than chi phases due to the meta-stable chi phase acting as a transition phase. As aging time at $850^{\circ}C$ increases, the corrosion resistance decreases owing to an increase in Cr, Mo and W depleted areas adjacent to the intermetallic phases such as sigma phases and chi phases.

Intergranular Corrosion Behavior of Medium and Low Carbon Austenitic Stainless Steel (오스테나이트계 중탄소 및 저탄소 스테인리스강의 입계부식 거동 분석)

  • Won, S.Y.;Kim, G.B.;Yoo, Y.R.;Choi, S.H.;Kim, Y.S.
    • Corrosion Science and Technology
    • /
    • v.21 no.3
    • /
    • pp.230-241
    • /
    • 2022
  • Austenitic stainless steel has been widely used because of its good corrosion resistance and mechanical properties. However, intergranular corrosion can occur if the alloy is welded or aged. The objective of this study was to determine intergranular corrosion behaviors of austenitic medium carbon (0.05 wt%) and low carbon (0.02 wt%) stainless steel aged at several conditions. Alloys were evaluated according to ASTM A262 Practice A, ISO 12732 DL-EPR (double loop-electrochemical potentiokinetic reactivation) test, and ASTM A262 Practice C. The degree of sensitization and intergranular corrosion rate were obtained. The relationship between the degree of sensitization and the intergranular corrosion rate showed a very large fluctuation. Such behavior might be related to whether two-dimension tests or three-dimension tests were performed. On the other hand, regardless of carbon content of alloys, when the intergranular corrosion rate increased, the degree of sensitization also increased. However, the DL-EPR test showed a higher sensitivity than the Huey test for differentiating the intergranular corrosion property at a low intergranular corrosion rate, while the Huey test had a higher sensitivity than the DL-EPR test for distinguishing the intergranular corrosion property at a high intergranular corrosion rate.

SUPERCRITICAL WATER LOOP DESIGN FOR CORROSION AND WATER CHEMISTRY TESTS UNDER IRRADIATION

  • Ruzickova, Mariana;Hajek, Petr;Smida, Stepan;Vsolak, Rudolf;Petr, Jan;Kysela, Jan
    • Nuclear Engineering and Technology
    • /
    • v.40 no.2
    • /
    • pp.127-132
    • /
    • 2008
  • An experimental loop operating with water at supercritical conditions(25MPa, $600^{\circ}C$ in the test section) is designed for operation in the research reactor LVR-15 in UJV Rez, Czech Republic. The loop should serve as an experimental facility for corrosion tests of materials for in-core as well as out-of-core structures, for testing and optimization of suitable water chemistry for a future HPLWR and for studies of radiolysis of water at supercritical conditions, which remains the domain where very few experimental data are available. At present, final necessary calculations(thermalhydraulic, neutronic, strength) are being performed on the irradiation channel, which is the most challenging part of the loop. The concept of the primary and auxiliary circuits has been completed. The design of the loop shall be finished in the course of the year 2007 to start the construction, out-of-pile testing to verify proper functioning of all systems and as such to be ready for in-pile tests by the end of the HPLWR Phase 2 European project by the end of 2009.

Preliminary Corrosion Model in Isothermal Pb and LBE Flow Loops

  • Lee, Sung Ho;Cho, Choon Ho;Song, Tae Yung
    • Corrosion Science and Technology
    • /
    • v.5 no.6
    • /
    • pp.201-205
    • /
    • 2006
  • HYPER(Hybrid Power Extraction Reactor) is the accelerator driven subcritical transmutation system developed by KAERI(Korea Atomic Research Institute). HYPER is designed to transmute long-lived transuranic actinides and fission products such as Tc-99 and I-129. Liquid lead-bismuth eutectic (LBE). Has been a primary candidate for coolant and spallation neutron target due to its appropriate thermal-physical and chemical properties, However, it is very corrosive to the common steels used in nuclear installations at high temperature. This corrosion problem is one of the main factors considered to set the upper limits of temperature and velocity of HYPER system. In this study, a parametric study for a corrosion model was performed. And a preliminary corrosion model was also developed to predict the corrosion rate in isothermal Pb and LBE flow loops.

Effects of Heat Inputs on Phase Transformation and Resistance to Intergranular Corrosion of F316 Austenitic Stainless Steel (F316 오스테나이트 스테인리스강의 상변태 및 입계부식저항성에 미치는 입열의 영향)

  • Jeong, Gyue-Seog;Lee, In-Sung;Kim, Soon-Tae
    • Corrosion Science and Technology
    • /
    • v.19 no.3
    • /
    • pp.146-155
    • /
    • 2020
  • To elucidate the effect of heat inputs on phase transformation and resistance to intergranular corrosion of F316 austenitic stainless steel (ASS), thermodynamic calculations of each phase and time-temperature-transformation diagram were conducted using JMaPro simulation software, oxalic acid etch test, double-loop electrochemical potentiokinetic reactivation test (DL-EPR), field emission scanning electron microscopy with energy dispersive spectroscopy, and transmission electron microscopy analyses of Cr carbide (Cr23C6), austenite phase and ferrite phase. F316 ASS containing a relatively low C content of 0.043 wt% showed a slightly sensitized microstructure (acceptably dual structure) due to a small amount of Cr carbide precipitated at heat affected zone irrespective of heat inputs. Based on results of DL-EPR test, although heat input was increased, the ratio of Ir to Ia was only increased very slightly due to a slight sensitization. Therefore, heat inputs have little influences on resistance to intergranular corrosion of F316 austenitic stainless steel containing 0.043 wt% C.

High Temperature Corrosion of Alloy 617 in Impure Helium and Air for Very High-Temperature Gas Reactor (초고온가스로용 Alloy 617의 불순물 함유 헬륨/공기 중에서 고온부식 특성)

  • Jung, Sujin;Lee, Gyeong-Geun;Kim, Dong-Jin;Kim, Dae-Jong
    • Corrosion Science and Technology
    • /
    • v.12 no.2
    • /
    • pp.102-112
    • /
    • 2013
  • A very high-temperature gas reactor (VHTR) is one of the next generation nuclear reactors owing to its safety, high energy efficiency, and proliferation-resistance. Heat is transferred from the primary helium loop to the secondary helium loop through an intermediate heat exchanger (IHX). Under VHTR environment Alloy 617 is being considered a candidate Ni-based superalloy for the IHX of a VHTR, owing to its good creep resistance, phase stability and corrosion resistance at high temperature. In this study, high-temperature corrosion tests were carried out at 850 - $950^{\circ}C$ in air and impure helium environments. Alloy 617 specimens showed a parabolic oxidation behavior for all temperatures and environments. The activation energy for oxidation was 154 kJ/mol in helium environment, and 261 kJ/mol in an air environment. The scanning electron microscope (SEM) and energy-dispersive x-ray spectroscopy (EDS) results revealed that there were a Cr-rich surface oxide layer, Al-rich internal oxides and depletion of grain boundary carbide after corrosion test. The thickness and depths of degraded layers also showed a parabolic relationship with the time. A corrosion rate of $950^{\circ}C$ in impure helium was higher than that in an air environment, caused by difference in the outer oxide morphology.

Effect of Induction Heat Bending Process on the Corrosion Properties of 316 Stainless Steel Pipes for Nuclear Power Plant (원자력발전소용 316 스테인리스강 배관의 부식특성에 미치는 유도가열벤딩공정의 영향)

  • Shin, Mincheol;Kim, Young Sik;Kim, Kyungsu;Chang, Hyunyoung;Park, Heungbae;Sung, Giho
    • Corrosion Science and Technology
    • /
    • v.13 no.3
    • /
    • pp.87-94
    • /
    • 2014
  • Recently, the application of bending products has been increased since the industries such as automobile, aerospace, ships, and plants greatly need the usage of pipes. For facility fabrication, bending process is one of key technologies for pipings. Induction heat bending process is composed of bending deformation by repeated local heat and cooling. Because of local heating and compressive strain, detrimental phases may be precipitated and microstructural change can be induced. This work focused on the effect of induction heat bending process on the properties of ASME SA312 TP316 stainless steel. Evaluation was done on the base metal and the bended areas before and after heat treatment. Microstructure analysis, intergranular corrosion test including Huey test, double loop electropotentiokinetic reactivation test, oxalic acid etch test, and anodic polarization test were performed. On the base of microstructural analysis, grain boundaries in bended extrados area were zagged by bending process, but there were no precipitates in grain and grain boundary and the intergranular corrosion rate was similar to that of base metal. However, pitting potentials of bended area were lower than that of the base metal and zagged boundaries was one of the pitting initiation sites. By re-annealing treatment, grain boundary was recovered and pitting potential was similar to that of the base metal.