DOI QR코드

DOI QR Code

Development of a gamma irradiation loop to evaluate the performance of a EURO-GANEX process

  • Sanchez-Garcia, I. (Centro de Investigaciones Energeticas, Medioambientales y Tecnologicas (CIEMAT)) ;
  • Galan, H. (Centro de Investigaciones Energeticas, Medioambientales y Tecnologicas (CIEMAT)) ;
  • Nunez, A. (Centro de Investigaciones Energeticas, Medioambientales y Tecnologicas (CIEMAT)) ;
  • Perlado, J.M. (Universidad Politecnica de Madrid (UPM), Instituto de Fusion Nuclear) ;
  • Cobos, J. (Centro de Investigaciones Energeticas, Medioambientales y Tecnologicas (CIEMAT))
  • Received : 2021.01.22
  • Accepted : 2021.11.29
  • Published : 2022.05.25

Abstract

A new irradiation loop design has been developed, which provides the ability to carry out radiolytic resistance studies of extraction systems simulating process relevant conditions in an easy and simple way. The step-by-step loop configuration permits an easy modification of settings and has a relative low volume requirement. This irradiation loop has been initially set up to test the main EURO-GANEX process steps: the lanthanide (Ln) and actinide (An) co-extraction followed by the transuranic (TRU) stripping. The performance and changes in the composition have been analyzed during the irradiation experiment by different techniques: gamma spectroscopy and ICP-MS for the extraction and corrosion behavior of the full system, and HPLC-MS and Raman spectroscopy to determine the degradation of the organic and aqueous solvents, respectively. The Ln and An co-extraction step and the corrosion that occurred during the first irradiation step revealed the favorable expected results according to literature. The effects of acidity changes occurred during the irradiation process, the presence of stainless corrosion products in solution as well as the new possible degradation compounds have been explored in the An stripping step. The results obtained demonstrate the importance of developing realistic irradiation experiments where different factors affecting the performance can be easily studied and isolated.

Keywords

Acknowledgement

This work has been developed and funded under the framework of the European H2020 GENIORS Project (Contract n: 730227), CIEMAT-ENRESA collaboration agreement (SOPSEP project, Contract n: 0079000269) and Spanish SYTRAD II project (National R&D program: "Retos de la Sociedad", reference number: ENE2017-89280-R).

References

  1. E. Collins, G. DelCul, B. Spencer, R. Jubin, C. Maher, I.-T. Kim, H. Lee, Y.S. Federov, V. Saprykin, V. Beznosyuk, State-of-the-art Report on the Progress of Nuclear Fuel Cycle Chemistry, Organisation for Economic Co-Operation and Development, 2018.
  2. International Atomic Energy Agency, Spent Fuel Reprocessing Options, IAEA-TECDOC-CD-1587, IAEA, Vienna, 2009.
  3. M. Salvatores, Nuclear fuel cycle strategies including partitioning and transmutation, Nucl. Eng. Des. 235 (7) (2005) 805-816. https://doi.org/10.1016/j.nucengdes.2004.10.009
  4. C. Poinssot, C. Rostaing, S. Greandjean, B. Boullis, Recycling the actinides, the cornerstone of any sustainable nuclear fuel cycles, Procedia Chem. 7 (2012) 349-357. https://doi.org/10.1016/j.proche.2012.10.055
  5. P. Baron, S. Cornet, E. Collins, G. DeAngelis, G. Del Cul, Y. Fedorov, J. Glatz, V. Ignatiev, T. Inoue, A. Khaperskaya, A review of separation processes proposed for advanced fuel cycles based on technology readiness level assessments, Prog. Nucl. Energy 117 (2019), 103091. https://doi.org/10.1016/j.pnucene.2019.103091
  6. P. Joly, E. Boo, ROADMAP-actinide Separation Processes, Euratom Research and Training Programme on Nuclear Energy, 2015.
  7. S. Bourg, A. Geist, J.M. Adnet, C. Rhodes, B.C. Hanson, Partitioning and transmutation strategy R&D for nuclear spent fuel: the SACSESS and GENIORS projects, EPJ Nucl. Sci. Technol. 6 (2020) 35. https://doi.org/10.1051/epjn/2019009
  8. A. Geist, J.M. Adnet, S. Bourg, C. Ekberg, H. Galan, P. Guilbaud, M. Miguirditchian, G. Modolo, C. Rhodes, R. Taylor, An overview of solvent extraction processes developed in Europe for advanced nuclear fuel recycling, part 1-heterogeneous recycling, Separ. Sci. Technol. (2020) 1-16.
  9. INTERNATIONAL ATOMIC ENERGY AGENCY, Assessment of Partitioning Processes for Transmutation of Actinides, 2010. Vienna.
  10. H. Galan, A. Nunez, A.G. Espartero, R. Sedano, A. Durana, J. de Mendoza, Radiolytic stability of TODGA: characterization of degraded samples under different experimental conditions, Procedia Chem. 7 (2012) 195-201. https://doi.org/10.1016/j.proche.2012.10.033
  11. Nunez, A.; Galan, H.; Cobos, J., TODGA degradation compounds: properties and effects on extraction systems-5400. In GLOBAL 2015 Proceedings..
  12. B.J. Mincher, G. Modolo, S.P. Mezyk, The effects of radiation chemistry on solvent extraction: 1. Conditions in acidic solution and a review of TBP radiolysis, Solvent Extr. Ion Exch. 27 (1) (2009) 1-25. https://doi.org/10.1080/07366290802544767
  13. B.J. Mincher, G. Modolo, S.P. Mezyk, The effects of radiation chemistry on solvent extraction 3: a review of actinide and lanthanide extraction, Solvent Extr. Ion Exch. 27 (5-6) (2009) 579-606. https://doi.org/10.1080/07366290903114098
  14. B.J. Mincher, G. Modolo, S.P. Mezyk, The effects of radiation chemistry on solvent extraction 4: separation of the trivalent actinides and considerations for radiation-resistant solvent systems, Solvent Extr. Ion Exch. 28 (4) (2010) 415-436. https://doi.org/10.1080/07366299.2010.485548
  15. M.C. Charbonnel, L. Berthon, B. Cames, L. Venault, S. Peuget, In Overview of the French Radiation Chemistry Studies, Radical Behavior Workshop, 2015. Idaho, July 20-22; Idaho.
  16. D.R. Peterman, B.J. Mincher, C.L. Riddle, R.D. Tillotson, Summary Report on Gamma Radiolysis of TBP/n-dodecane in the Presence of Nitric Acid Using the Radiolysis/hydrolysis Test Loop, Idaho National Laboratory (INL), 2010.
  17. M. Miguirditchian, C. Sorel, B. Cames, I. Bisel, P. Baron, D. Espinoux, J. Calor, C. Viallesoubranne, B. Lorrain, M. Masson, In HA demonstration in the Atalante facility of the GANEX 1st cycle for the selective extraction of Uranium from HLW, Proc. GLOBAL (2009) 1032-1035.
  18. D. Peterman, A. Geist, B. Mincher, G. Modolo, M.H. Galan, L. Olson, R. McDowell, Performance of an i-SANEX system based on a water-soluble BTP under continuous irradiation in a γ-radiolysis test loop, Ind. Eng. Chem. Res. 55 (39) (2016) 10427-10435. https://doi.org/10.1021/acs.iecr.6b02862
  19. D.R. Peterman, L.G. Olson, Summary of ALSEP Test Loop Solvent Irradiation Testing, Idaho National Laboratory.(INL), 2016.
  20. R. Taylor, M. Carrott, H. Galan, A. Geist, X. Heres, C. Maher, C. Mason, R. Malmbeck, M. Miguirditchian, G. Modolo, The EURO-GANEX process: current status of flowsheet development and process safety studies, Procedia Chem. 21 (2016) 524-529. https://doi.org/10.1016/j.proche.2016.10.073
  21. M. Carrott, K. Bell, J. Brown, A. Geist, C. Gregson, X. Heres, C. Maher, R. Malmbeck, C. Mason, G. Modolo, Development of a new flowsheet for coseparating the transuranic actinides: the "EURO-GANEX" process, Solvent Extr. Ion Exch. 32 (5) (2014) 447-467. https://doi.org/10.1080/07366299.2014.896580
  22. R. Malmbeck, D. Magnusson, S. Bourg, M. Carrott, A. Geist, X. Heres, M. Miguirditchian, G. Modolo, U. Mullich, C. Sorel, Homogenous recycling of transuranium elements from irradiated fast reactor fuel by the EURO-GANEX solvent extraction process, Radiochim. Acta 107 (9-11) (2019) 917-929. https://doi.org/10.1515/ract-2018-3089
  23. I. Sanchez-Garcia, H. Galan, J.M. Perlado, J. Cobos, Development of experimental irradiation strategies to evaluate the robustness of TODGA and water-soluble BTP extraction systems for advanced nuclear fuel recycling, Radiat. Phys. Chem. 177 (2020), 109094. https://doi.org/10.1016/j.radphyschem.2020.109094
  24. I. Sanchez-Garcia, H. Galan, J.M. Perlado, J. Cobos, Stability studies of GANEX system under different irradiation conditions, EPJ Nucl. Sci. Technol. 5 (2019) 19. https://doi.org/10.1051/epjn/2019049
  25. J.-M. Adnet, M. Miguirditchian, C. Hill, X. Heres, M. Lecomte, M. Masson, P. Brossard, P. Baron, In Development of new hydrometallurgical processes for actinide recovery: GANEX concept, Proceedings of Global, Paper no 119 (2005).
  26. Y. Sasaki, Y. Sugo, S. Suzuki, S. Tachimori, The novel extractants, diglycolamides, for the extraction of lanthanides and actinides in HNO3-n-dodecane system, Solvent Extr. Ion Exch. 19 (1) (2001) 91-103. https://doi.org/10.1081/sei-100001376
  27. S.A. Ansari, P.N. Pathak, V.K. Manchanda, M. Husain, A.K. Prasad, V.S. Parmar, N,N,N',N'-Tetraoctyl Diglycolamide (TODGA): a promising extractant for actinide-partitioning from high-level waste (HLW), Solvent Extr. Ion Exch. 23 (4) (2005) 463-479. https://doi.org/10.1081/SEI-200066296
  28. L. Berthon, J. Morel, N. Zorz, C. Nicol, H. Virelizier, C. Madic, DIAMEX process for minor actinide partitioning: hydrolytic and radiolytic degradations of malonamide extractants, Separ. Sci. Technol. 36 (5-6) (2001) 709-728. https://doi.org/10.1081/SS-100103616
  29. M. Sypula, A. Wilden, C. Schreinemachers, R. Malmbeck, A. Geist, R. Taylor, G. Modolo, Use of polyaminocarboxylic acids as hydrophilic masking agents for fission products in actinide partitioning processes, Solvent Extr. Ion Exch. 30 (7) (2012) 748-764. https://doi.org/10.1080/07366299.2012.700591
  30. A. Geist, U. Mullich, D. Magnusson, P. Kaden, G. Modolo, A. Wilden, T. Zevaco, Actinide (III)/lanthanide (III) separation via selective aqueous complexation of actinides (III) using a hydrophilic 2, 6-bis (1, 2, 4-triazin-3-yl)-pyridine in nitric acid, Solvent Extr. Ion Exch. 30 (5) (2012) 433-444. https://doi.org/10.1080/07366299.2012.671111
  31. R. Taylor, I. May, A. Wallwork, I. Denniss, N. Hill, B.Y. Galkin, B.Y. Zilberman, Y.S. Fedorov, The applications of formo-and aceto-hydroxamic acids in nuclear fuel reprocessing, J. Alloys Compd. 271 (1998) 534-537.
  32. M. Carrott, O. Fox, C. Maher, C. Mason, R.J. Taylor, S.I. Sinkov, G.R. Choppin, Solvent extraction behavior of plutonium (IV) ions in the presence of simple hydroxamic acids, Solvent Extr. Ion Exch. 25 (6) (2007) 723-745. https://doi.org/10.1080/07366290701634560
  33. M. Carrott, C. Gregson, R. Taylor, Neptunium extraction and stability in the GANEX solvent: 0.2 M TODGA/0.5 M DMDOHEMA/kerosene, Solvent Extr. Ion Exch. 31 (5) (2013) 463-482. https://doi.org/10.1080/07366299.2012.735559
  34. Y. Sugo, Y. Sasaki, S. Tachimori, Studies on hydrolysis and radiolysis of N, N, N', N'-tetraoctyl-3-oxapentane-1, 5-diamide, Radiochim. Acta 90 (3) (2002) 161-165. https://doi.org/10.1524/ract.2002.90.3_2002.161
  35. C.A. Zarzana, G.S. Groenewold, B.J. Mincher, S.P. Mezyk, A. Wilden, H. Schmidt, G. Modolo, J.F. Wishart, A.R. Cook, A comparison of the γ-radiolysis of TODGA and T (EH) DGA using UHPLC-ESI-MS analysis, Solvent Extr. Ion Exch. 33 (5) (2015) 431-447. https://doi.org/10.1080/07366299.2015.1012885
  36. G. Modolo, H. Asp, C. Schreinemachers, H. Vijgen, Development of a TODGA based process for partitioning of actinides from a PUREX raffinate Part I: batch extraction optimization studies and stability tests, Solvent Extr. Ion Exch. 25 (6) (2007) 703-721. https://doi.org/10.1080/07366290701634578
  37. H. Galan, D. Munzel, A. Nunez, U. Mullich, J. Cobos, A. Geist, In Stability and recyclability of SO3-Ph-BTP for i-SANEX process development, in: Proceedings of the International Solvent Extraction Conference (ISEC 2014), 2014, pp. 137-143.
  38. I. Sanchez-Garcia, L.J. Bonales, H. Galan, J.M. Perlado, J. Cobos, Radiolytic Degradation of sulfonated BTP and acetohydroxamic acid under EURO-GANEX conditions, Radiat. Phys. Chem. 183 (2021), 109402. https://doi.org/10.1016/j.radphyschem.2021.109402
  39. I. Sanchez-Garcia, L.J. Bonales, H. Galan, J.M. Perlado, J. Cobos, Spectroscopic study of acetohydroxamic acid (AHA) hydrolysis in the presence of europium. Implications in the extraction system studies for lanthanide and actinide separation, New J. Chem. 43 (39) (2019) 15714-15722. https://doi.org/10.1039/c9nj03360b
  40. J. de Mendoza, B. Camafort, A.G. Espartero, A. Nunez, H. Galan, TODGA Industrial Scale-Up Report, ACSEPT FP7-CP-2007-211 267, 2009.
  41. Facility, N. http://fusionwiki.ciemat.es/wiki/LNF:Technology#NAYADE_Co60_irradiation_facility (accessed October 2020)..
  42. R.A. Leonard, Design principles and applications of centrifugal contactors for solvent extraction, in: Ion Exchange and Solvent Extraction, CRC Press, 2009, pp. 576-629.
  43. H. Fricke, E.J. Hart, The Oxidation of Fe++ to Fe+++ by the irradiation with X-Rays of solutions of ferrous sulfate in sulfuric acid, J. Chem. Phys. 3 (1) (1935) 60-61. https://doi.org/10.1063/1.1749558
  44. D. Magnusson, B. Christiansen, R. Malmbeck, J.P. Glatz, Investigation of the radiolytic stability of a CyMe4-BTBP based SANEX solvent, Radiochim. Acta 97 (9) (2009) 497-502.
  45. M. Carrott, A. Geist, X. Heres, S. Lange, R. Malmbeck, M. Miguirditchian, G. Modolo, A. Wilden, R. Taylor, Distribution of plutonium, americium and interfering fission products between nitric acid and a mixed organic phase of TODGA and DMDOHEMA in kerosene, and implications for the design of the "EURO-GANEX" process, Hydrometallurgy 152 (2015) 139-148. https://doi.org/10.1016/j.hydromet.2014.12.019
  46. L. Berthon, S. Journet, V. Lalia, J. Morel, N. Zorz, C. Berthon, B. Amekraz, Use of Chromatographic Techniques to Study a Degraded Solvent for Minor Actinides Partitioning: Qualitative and Quantitative Analysis, CEA VALRHO, 2004.
  47. Y. Sugo, Y. Izumi, Y. Yoshida, S. Nishijima, Y. Sasaki, T. Kimura, T. Sekine, H. Kudo, Influence of diluent on radiolysis of amides in organic solution, Radiat. Phys. Chem. 76 (5) (2007) 794-800. https://doi.org/10.1016/j.radphyschem.2006.05.008
  48. G.P. Horne, S.P. Mezyk, N. Moulton, J.R. Peller, A. Geist, Time-resolved and steady-state irradiation of hydrophilic sulfonated bis-triazinyl-(bi) pyridines-modelling radiolytic degradation, Dalton Trans. 48 (14) (2019) 4547-4554. https://doi.org/10.1039/c9dt00474b