• Title/Summary/Keyword: corrosion sensors for concrete

Search Result 22, Processing Time 0.029 seconds

Long-Term Experiments for Demonstrating Durability of a Concrete Barrier and Gas Generation in a Low-and Intermediate-Level Waste Disposal Facility

  • Kang, Myunggoo;Seo, Myunghwan;Kim, Soo-Gin;Kwon, Ki-Jung;Jung, Haeryong
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.19 no.2
    • /
    • pp.267-270
    • /
    • 2021
  • Long-term experiments have been conducted on two important safety issues: long-term durability of a concrete barrier with the steel reinforcements and gas generation from low-and intermediate-level wastes in an underground research tunnel of a radioactive waste disposal facility. The gas generation and microbial communities were monitored from waste packages (200 L and 320 L) containing simulated dry active wastes. In the concrete experiment, corrosion sensors were installed on the steel reinforcements which were embedded 10 cm below the surface of concrete in a concrete mock-up, and groundwater was fed into the mock-up at a pressure of 2.1 bars to accelerate groundwater infiltration. No clear evidence was observed with respect to corrosion initiation of the steel reinforcement for 4 years of operation. This is attributed to the high integrity and low hydraulic conductivity of the concrete. In the gas generation experiment, significant levels of gas generation were not measured for 4 years. These experiments are expected to be conducted for a period of more than 10 years.

Ultrasonics and electromagnetics for a wireless corrosion sensing system embedded in structural concrete

  • Hietpas, K.;Ervin, B.;Banasiak, J.;Pointer, D.;Kuchma, D.A.;Reis, H.;Bernhard, J.T.
    • Smart Structures and Systems
    • /
    • v.1 no.3
    • /
    • pp.267-282
    • /
    • 2005
  • This work describes ongoing development of an embedded sensor system for the early detection and prevention of deterioration of reinforcing steel tendons within reinforced concrete. These devices will evaluate the condition of the steel tendon using ultrasonic techniques and then wirelessly transmit this data to the outside world without human intervention. The ultrasonic transducers and the interpretation of the sensed signals that allow detection and prognosis of tendon condition are detailed. Electrical characterization of concrete mixtures used in bridge construction is conducted and a wideband microstrip antenna is designed and fabricated to operate between 2.4 and 2.5 GHz when embedded in such a medium. Simulations and measurements of the embedded antenna element are presented. Transceiver selection and implementation are discussed as well as future work in operational protocols, sensor networking, and power sources. By implementing commercially available off-the-shelf components whenever possible, these devices have the potential to save millions of dollars a year in evaluation, repair and replacement of reinforced concrete.

Monitoring in a reinforced concrete structure for storing low and intermediate level radioactive waste. Lessons learnt after 25 years

  • Nuria Rebolledo;Julio Torres;Servando Chinchon-Paya;Javier Sanchez;Sylvia de Gregorio;Manuel Ordonez;Inmaculada Lopez
    • Nuclear Engineering and Technology
    • /
    • v.55 no.4
    • /
    • pp.1199-1209
    • /
    • 2023
  • Where concrete structures are designed to have a service life of over 100 years, their performance must be monitored, for the prediction models available are fraught with uncertainties that need to be eliminated. The present study was conducted to meet that need by monitoring a pilot structure for low and intermediate radioactive waste storage. Long-term operation of the sensors was observed to be adequate to determine the value of the parameters that characterise structural durability, such as corrosion current density. The parameters analysed were correlated to calculate their reciprocal impact: where applied in conjunction with artificial intelligence tools, temperature, for instance, was found suitable for finding activation energy and expansion coefficients and detecting outliers. The results showed the pilot structure to perform satisfactorily.

Review of Radio Frequency Identification and Wireless Technology for Structural Health Monitoring

  • Dhital, Dipesh;Chia, Chen Ciang;Lee, Jung-Ryul;Park, Chan-Yik
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.30 no.3
    • /
    • pp.244-256
    • /
    • 2010
  • Radio frequency identification(RFID) combined with wireless technology has good potential for structural health monitoring(SHM). We describe several advantages of RFID and wireless technologies for SHM, and review SHM examples with working principles, design and technical details for damage detection, heat exposure monitoring, force/strain sensing, and corrosion detection in concrete, steel, carbon fiber reinforced polymer(CFRP), and other materials. Various sensors combined with wireless communication are also discussed. These methodologies can be readily developed, implemented, and customized. There are some technical difficulties, but solutions are being addressed. Lastly, a surface acoustic wave-based RFID system is presented, and possible future trends of SHM based on RFID and wireless technology are presented.

Detection of Fracture Signals of Low Prestressed Steel Wires in a 10 m PSC Beam by Continuous Acoustic Monitoring Techniques (연속음향감지기법을 이용한 긴장력이 감소된 10 m PSC보의 PS 강선 파단음파 감지)

  • Youn, Seok-Goo;Lee, Chang-No
    • Journal of the Korea Concrete Institute
    • /
    • v.22 no.1
    • /
    • pp.113-122
    • /
    • 2010
  • Corrosion of prestressing tendons and wire fractures in grouted post-tensioned prestressed concrete bridges have been considered as a serious safety problem. In bridge evaluation the condition of prestressing tendons should be inspected, and if corroded tendons are found, the loss of tendon area should be included when we calculate the ultimate strength. In the previous study, it was evaluated that continuous acoustic monitoring techniques could be considered as a reliable non-destructive method for detecting wire fractures of fully grouted post-tensioned prestressing tendons. In the present study, an experimental test was performed for detecting wire fractures of post-tensioned prestressing tendons which are prestressed lower than current design level. A 10 m prestressed concrete beam was fabricated, which included two tendons prestressed 66 percentage and 40 percentage of tensile strength, respectively. The corrosion of two tendons was induced by an accelerated corrosion equipment and the test beam was monitored by using seven acoustic sensors and a continuous acoustic monitoring system. From each prestressing tendon, two acoustic signals of wire fractures were successfully detected and source locations were estimated within 20 mm error. Based on the test results, it is considered that continuous acoustic monitoring techniques can be applied to detect low-prestressed wire fracture in fully grouted post-tensioned prestressed concrete beams.

Characteristics of OCP of Reinforced Concrete Using Socket-type Electrodes during Periodic Salt Damage Test (주기적 염해 시험에 따른 소켓 타입 전극을 활용한 철근 콘크리트의 OCP 특성)

  • Lee, Sang-Seok;Kwon, Seung-Jun
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.25 no.4
    • /
    • pp.28-36
    • /
    • 2021
  • It is known that buried rebars inside concrete structures are protected from corrosion due to passive layer. It is very important to delay the timing of corrosion or evaluate a detection of corrosion initiation for the purpose of cost-beneficiary service life of a structure. In this study, corrosion monitoring was performed on concrete specimens considering 3 levels of cover depth(60 mm, 45 mm, and 30 mm), W/C(water to cement) ratio(40.0%, 50.0%, and 60.0%) and chloride concentration(0.0%, 3.5%, and 7.0%). OCP(Open Circuit Potential) was measured using agar-based socket type sensors. The OCP measurement showed the consistent behavior where the potential was reduced in wet conditions and it was partially recovered in dry conditions. In the case of 30 mm of cover depth for most W/C ratio cases, the lowest OCP value was measured and rapid OCP recovery was evaluated in increasing cover depth from 30 mm to 45 mm, since cover depth was an effective protection against chloride ion ingress. As the chloride concentration increased, the effect on the cover depth tended to be more dominant than the that of W/C ratio. After additional monitoring and physical evaluation of chloride concentration after specimen dismantling, the proposed system can be improved with increasing reliability of the corrosion monitoring.

Flexural Strength Evaluation of PSC Beam with Loss of PS Tendon Area (PS강재의 단면적 감소에 따른 PSC보의 휨강도 평가)

  • Park, Soon-Hyung;Kim, Yong-Tae;Youn, Seok-Goo;Kim, Eun-Kyum
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2008.04a
    • /
    • pp.309-312
    • /
    • 2008
  • This paper describes ultimate load tests which were performed to show the effects of prestress loss and tendon corrosion on the flexural strength of post-tensioned concrete beams and the occurrence of wire fracture. Five test specimens were fabricated in laboratory with the variations of the prestress of tendons and the loss of tendon area. For two specimens, small area of tendon at the center of the beam was exposed by using diameter 25mm drill and the exposed tendon was corroded using accelerated corrosion equipment. During the tests, deflections, crack width, and strain changes were measured and acoustic events were monitored with two acoustic sensors. Tests results show that the ultimate flexural strength of test specimens with corroded tendons is smaller than the predicted flexural strength which is calculated considering the loss of tendon area. It is considered that estimation of flexural strength of PSC beams with corroded tendons is very complicated just based on the loss of tendon area obtained by one-side visual inspection.

  • PDF

Experimental Tests for the Evaluation of One-dimensional and Two-dimensional Acoustic Source Locations with 50m length of a PSC Box Girder (50m PSC박스거더를 이용한 1차원과 2차원 음원위치 산정 실험)

  • Youn, Seok-Goo;Lee, Changno
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.33 no.2
    • /
    • pp.433-442
    • /
    • 2013
  • This paper presents experimental research work for the evaluation of one-dimensional and two-dimensional acoustic source locations with 50m length of a precast prestressed concrete box girder. Acoustic events are generated by the impacts of Schmidt Hammer and the impact signals are detected by acoustic emission sensors mounted on the concrete web surface of PSC box girder with the average spacing of 9.34m. Based on the amplitude of detected acoustic signals, considering the noises developed in PSC box girder bridges, the arrival times of acoustic signals are estimated by the first arrival times of 0Volt, 0.5Volt, and 1.0Volt amplitude in each signal. Using Least Square Method, the velocities and the source locations of acoustic signals are evaluated. Based on the test results, the spacing of AE sensors and the AE sensor networks are discussed to reduce the source location errors.

Performance evaluation of smart prefabricated concrete elements

  • Zonta, Daniele;Pozzi, Matteo;Bursi, Oreste S.
    • Smart Structures and Systems
    • /
    • v.3 no.4
    • /
    • pp.475-494
    • /
    • 2007
  • This paper deals with the development of an innovative distributed construction system based on smart prefabricated concrete elements for the real-time condition assessment of civil infrastructure. So far, two reduced-scale prototypes have been produced, each consisting of a $0.2{\times}0.3{\times}5.6$ m RC beam specifically designed for permanent instrumentation with 8 long-gauge Fiber Optic Sensors (FOS) at the lower edge. The sensing system is Fiber Bragg Grating (FBG)-based and can measure finite displacements both static and dynamic with a sample frequency of 625 Hz per channel. The performance of the system underwent validation in the laboratory. The scope of the experiment was to correlate changes in the dynamic response of the beams with different damage scenarios, using a direct modal strain approach. Each specimen was dynamically characterized in the undamaged state and in various damage conditions, simulating different cracking levels and recurrent deterioration scenarios, including cover spalling and corrosion of the reinforcement. The location and the extent of damage are evaluated by calculating damage indices which take account of changes in frequency and in strain-mode-shapes. The outcomes of the experiment demonstrate how the damage distribution detected by the system is fully compatible with the damage extent appraised by inspection.