• 제목/요약/키워드: corrosion ratio

검색결과 590건 처리시간 0.022초

Influence of Carbon Fiber on Corrosion Behavior of Carbon Steel in Simulated Concrete Pore Solutions

  • Tang, Yuming;Dun, Yuchao;Zhang, Guodong;Zhao, Xuhui;Zuo, Yu
    • Corrosion Science and Technology
    • /
    • 제16권4호
    • /
    • pp.175-182
    • /
    • 2017
  • Galvanic current measurement, polarization curves, electrochemical impedance spectroscopy and weight loss test were used to study the corrosion behavior of carbon steel before and after carbon fibers coupling to the carbon steel in simulated concrete pore solutions, and the film composition on the steel surface was analyzed using XPS method. The results indicate that passive film on steel surface had excellent protective property in pore solutions with different pH values (13.3, 12.5 and 11.6). After coupling with carbon fibers (the area ratio of carbon steel to carbon fiber was 12.31), charge transfer resistance $R_{ct}$ of the steel surface decreased and the $Fe^{3+}/Fe^{2+}$ value in passive film decreased. As a result, stability of the film decreased and the corrosion rate of steel increased. Decreasing of the area ratio of steel to carbon fiber from 12.3 to 6.15 resulted in the decrease in $R_{ct}$ and the increase in corrosion rate. Especially in the pore solution with pH 11.6, the coupling leads the carbon steel to corrode easily.

강섬유 혼입량이 철근 부식저항성능에 미치는 영향 (Influence of steel fiber contents on corrosion resistance of steel reinforcement)

  • 김성도;문도영;이규필
    • 한국터널지하공간학회 논문집
    • /
    • 제17권3호
    • /
    • pp.283-293
    • /
    • 2015
  • 본 연구에서는 강섬유보강콘크리트의 부식저항성능을 규명하기 위한 촉진염소이온확산시험과 표면전기저항시험을 수행하였다. 또한 배합평가를 위한 기초시험으로서 굳지 않은 콘크리트 공기량, 일축압축강도, 굳은 콘크리트의 흡습시험을 수행하였다. 실험변수는 두 종류의 물-시멘트비(0.44, 0.50)와 세 개의 강섬유 혼입량(0.25%, 0.5%, 1%)으로 선정하였다. 주목할 것은 모든 타설시 콘크리트의 다짐량은 동일하게 하였다. 시험결과, 동일한 작업량으로 다짐이 되었을 때, 물-시멘트비에 상관없이 두배합 모두에서 강섬유 혼입률이 증가함에 따라 부식저항성능이 감소하는 것으로 확인되었다. 그러나, 동일한 강섬유 혼입비에 대하여 배합의 물-시멘트비가 낮은 콘크리트의 부식저항성능이 우수한 것으로 나타났다. 따라서, 강섬유보강콘크리트의 타설시 유동성의 확보와 충분한 다짐이 염소이온침투저항성능을 확보하기 위하여 매우 중요하다고 판단된다.

해사와 강모래의 혼합재를 사용한 콘크리트에 관한 실험적 연구 (An Experimental Study on The Effect of Mixed Sand Used Sea and River Sand as Fine Aggregate of Concrete)

  • 남상일;김문한;김무한
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 1992년도 가을 학술발표회 논문집
    • /
    • pp.31-36
    • /
    • 1992
  • This paper, an experimental study on the effect of mixed sand used sea and river as fine aggregate of concrete, is connected with the properties of fresh and hardended concrete and steel corrosion to investigate workability and engineering properties and general steel bar's corrosion of concrete used mixed sand. After analyzing positively fresh and hardenend concrete and ratio of the corrosion area affected by the autoclave cycle, the purpose of this paper is to provide an experimental data developing concrete used mixed sand.

  • PDF

오스테나이트계 스테인리스강의 응고균열저항 내식성 및 극저온 초성 향상을 위한 초정응고 형식의 제어 (( Control of Primary Solidification Mode for Improving Solidification Cracking Resistance , Corrosion Resistance and Cryogenic Toughness of Austenitic Stainless Steel)

  • 정호신
    • 수산해양기술연구
    • /
    • 제28권2호
    • /
    • pp.208-215
    • /
    • 1992
  • Concept of primary solidification mode control was adopted to obtain optimal solidification crack resistance, hot ductility, corrosion resistance and toughness for austenitic stainless steel. By controlling primary solidification phase as primary $\delta$ and containing no ferrite at room temperature, optimal solidification crack resistance, hot ductility, corrosion resistance and cryogenic toughness could be obtained. The optimum chemical composition of austenitic stainless steel ranges 1.46~1.55(Creq/Nieq ratio) calculated by Schaeffler's equation.

  • PDF

증기발생기 전열관에서의 응력부식균열 성장해석 (Simulation of Stress Corrosion Crack Growth in Steam Generator Tubes)

  • 신규인;박재학;김흥덕;정한섭
    • 한국안전학회지
    • /
    • 제15권3호
    • /
    • pp.57-65
    • /
    • 2000
  • The stress corrosion crack growth is simulated assuming a small axial surface crack inside a S/G tube. Internal pressure and residual stresses are considered as applied forces. Stress intensity factors along crack front, variation of crack shape and crack growth rate are obtained and discussed. It is noted that the aspect ratio of the crack is not depend on the initial crack shape but depend on the residual stress distribution.

  • PDF

EFFECT OF LOAD AND ANODE/CATHODE AREA RATIO ON WEAR OF Zr-ALLOY IN $Na_2SO_4$ SOLUTION

  • Iwabuchi, A.;Hosoya, K;Abe, K.;Shimizu, T.;Kim, S.S.
    • 한국윤활학회:학술대회논문집
    • /
    • 한국윤활학회 2002년도 proceedings of the second asia international conference on tribology
    • /
    • pp.205-206
    • /
    • 2002
  • In this paper we examined the contribution of mechanical and electrochemical factors in corrosive wear for Zr-alloy against $Al_2O_3$ ball in $Na_2SO_4$ solution. Normal load and the area of metallic specimen was varied to change the corrosion behavior. At the commence of sliding, the potential drop took place, which increased with load due to the great exposure of fresh surface. Wear volume was linearly proportional to load. The corrosion factor was about 15%. By increasing the Aa/Ac ratio, corrosion factor to total wear decreases and saturates above Aa/Ac=0.15.

  • PDF

Damage identification in beam-like pipeline based on modal information

  • Yang, Zhi-Rong;Li, Hong-Sheng;Guo, Xing-Lin;Li, Hong-Yan
    • Structural Engineering and Mechanics
    • /
    • 제26권2호
    • /
    • pp.179-190
    • /
    • 2007
  • Damage detection based on measured vibration data has received intensive studies recently. Frequently, the damage to a structure may be reflected by a change of some system parameters, such as a degradation of the stiffness. In this paper, we apply a method to nondestructively locate and estimate the severity of damage in corrosion pipeline for which a few natural frequencies or mode shapes are available. The method is based on the strain modal sensitivity ratio (SMSR) and the orthogonality conditions sensitivities (OCS) applied to vibration features identified during the monitoring of the pipeline. The advantage of these methods is that it only requires measuring few modal parameters. The SMSR-based and OCS-based damage detection methods are illustrated using computer-simulated and laboratory testing data. The results show that the current method provides a precise indication of both the location and the extent of corrosion pipeline.

주석-니켈합금 도금층의 내식성 및 경도 (Corrosion resistance and Hardness of Tin-Nickel Electrodeposits)

  • 예길촌;채영욱
    • 한국표면공학회지
    • /
    • 제32권4호
    • /
    • pp.521-530
    • /
    • 1999
  • The corrosion resistance and the hardness of the tin-nickel alloy deposits electroplated in pyrophosphate bath were invesitigated according to electrolysis conditions and microstructure of the alloy. The weight loss of alloy deposits increased with the Sn content of single phase (Ni-Sn) alloy showing the lowest weight loss in the alloy with 54∼57wt% Sn. On the other hand, the multiphase alloy with 35∼42wt% Sn showed the highest one. The CASS test result was consistent with that of immersion test, and was good agreement with the corrosion data of polarization measurements. The hardness of alloy deposits decreased with the increase of Sn ratio in bath due to the grain size increase of the alloy. However, it increased noticeably with decreasing current density in the bath condition of low Sn ratio (0.1)

  • PDF

Compressive behavior of circular hollow and concrete-filled steel tubular stub columns under atmospheric corrosion

  • Gao, Shan;Peng, Zhen;Wang, Xuanding;Liu, Jiepeng
    • Steel and Composite Structures
    • /
    • 제33권4호
    • /
    • pp.615-627
    • /
    • 2019
  • This paper aims to study the compressive behavior of circular hollow and concrete-filled steel tubular stub columns under simulated marine atmospheric corrosion. The specimens after salt spray corrosion were tested under axial compressive load. Steel grade and corrosion level were mainly considered in the study. The mechanical behavior of circular CFST specimens is compared with that of the corresponding hollow ones. Design methods for circular hollow and concrete-filled steel tubular stub columns are modified to consider the effect of marine atmospheric corrosion. The results show that linear fitting curves could be used to present the relationship between corrosion rate and the mechanical properties of steel after simulated marine atmospheric corrosion. The ultimate strength of hollow steel tubular and CFST columns decrease with the increase of corrosion rate while the ultimate displacement of those are hardly affected by corrosion rate. Increasing corrosion rate would change the failure of CFST stub column from ductile failure to brittle failure. Corrosion rate would decrease the ductility indexes of CFST columns, rather than those of hollow steel tubular columns. The confinement factor ${\xi}$ of CFST columns decreases with the increase of corrosion rate while the ratio between test value and nominal value shows an opposite trend. With considering marine atmospheric corrosion, the predicted axial strength of hollow steel tubular and CFST columns by Chinese standard agree well with the tested values while the predictions by Japanese standard seem conservative.

Strength prediction of corrosion reinforced concrete columns strengthened with concrete filled steel tube under axial compression

  • Liang, Hongjun;Jiang, Yanju;Lu, Yiyan;Hu, Jiyue
    • Steel and Composite Structures
    • /
    • 제37권4호
    • /
    • pp.481-492
    • /
    • 2020
  • Twenty-two corrosion-damaged columns were simulated through accelerated steel corrosion tests. Eight specimens were directly tested to failure under axial load, and the remaining specimens were tested after concrete-filled steel tube (CFST) strengthening. This study aimed to investigate the damage of RC columns after corrosion and their restoration and enhancement after strengthening. The research parameters included different corrosion degrees of RC columns, diameter-to-thickness ratio of steel tube and the strengthening concrete strength. Experimental results showed that CFST strengthening method could change the failure mode of corrosion-damaged RC columns from brittleness to ductility. In addition to the bearing capacity provided by the strengthening materials, it can also provide an extra 26.7% amplification because of the effective confinement provided by steel tubes. The influence of corrosion on reinforcement and concrete was quantitatively analysed and considered in the design formula. The proposed formula accurately predicted the bearing capacity of the strengthened columns with a maximum error of only 7.68%.