• Title/Summary/Keyword: corrosion phenomenon

Search Result 131, Processing Time 0.02 seconds

Immersion Corrosion Characteristic of SUS420J2 Steel with a Material for Fish Pre-Processing Machinery (어류 전처리 가공기계용 재료 SUS420J2강의 침지부식 특성)

  • 김선진;안석환;최대검;정현철;김상수
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.38 no.1
    • /
    • pp.79-88
    • /
    • 2002
  • 13%Cr martensitic stainless steel has been used mainly with a material for fish pre-processing machinery. However, it has not very nice cutting section because of little of the carbon content. Therefore, SUS420J2 steel that contents 0.3%C with high-strength in spite of the rust is used with a material for fish pre-processing machinery. However, studies on the corrosion characteristics of SUS420J2 steel are relatively rare. Especially, the corrosion phenomenon may cause serious degradation because the fish pre-processing machinery is exposed always to seawater environment. In this paper, the immersion corrosion test was carried out at seawater environment (pH=7.52) on SUS420J2 steel specimens that have various post-treatment conditions and its corrosion characteristics were evaluated. From test results, the specimens such as base metal, vacuum heat treatment, electrolytic polishing and tempering after quenching tend somewhat sensitive from the corrosion. In the case of vacuum heat treatment specimen of continuous immersion during 360 days, the weight loss ratio was high about seven times when compared with the different specimens. On the contrary, SUS420J2 steel specimen that has the heat treatment of tempering after quenching and the electrolytic polishing was less sensitive from the corrosion, and the weight loss ratio was very low.

Development of a Forecasting Model for Refinery Crude Column Overhead Corrosion Control (원유 증류 공정 탑 상부의 부식 예측 모델 개발)

  • Kim, Seung-Nam;Kim, Jung-Hwan;Moon, Il
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.35 no.2
    • /
    • pp.143-148
    • /
    • 2011
  • Corrosion at the top of a distillation column is a common problem in refineries and chemical plants. In particular, severe damage has been inflicted in refineries by corrosive materials such as hydrogen sulfide and chlorine. Therefore, the mechanism of the corrosion occurring at the top of a distillation column has been analyzed, and a model for forecasting the corrosion rate has been developed. Four major materials were selected for modeling: $H_2S$, $CO_2$, $H^+$ and $Cl^-$. These were selected by taking into consideration their effect on the corrosion rate. Studies on the transport phenomenon and reaction engineering for this model were carried out, and the reliability of the model was verified on the basis of the data measured at a real refinery.

A Study on the Corrosion and Degradation of Boiler Tubes Steel in Fossil Power Plant

  • Baik, Young Min;Jeong, Hee Don;Kweon, Young Gak
    • Corrosion Science and Technology
    • /
    • v.5 no.4
    • /
    • pp.123-128
    • /
    • 2006
  • It was analyzed the causes of boiler tube rupture due to a degradation and corrosion on the boiler tubes in fossil power plant. The experiments were carried out among samples taken from the operating facilities. The result were analyzed based on experimental results from mechanical strength, microstructure observation, and hardness measurement in order to determine the cause of local rupture on boiler tubes. In general, 2.25Cr-1Mo steel generates carbides, it is coarsened, its ductility and strength abruptly decreased as degradation is in progress, In order to confirm this phenomenon, we observed changes of the mount of Cr and Mo of carbide by carrying out EDX chemical composition analysis. The amount of Cr and Mo in the degraded material or service exposed material gradually increased the amount of Mo but initially they were almost maintained at the same amount. Furthermore, we observed that the carbide become coarsened both in the grain and at the grain boundary. Tensile test was carried out to measure a material hardness and to recognize a drop-off of hardness. Overall result for tensile strength and hardness turned out to be lower than new material and mechanical strength and hardness was degraded as the material degradation was in progress.

The Influence of the Changing of Cyclic Frequency on the Corrosion Fatigue Fracture Behavior of the Dual Phase Steel in 3% NaCl Solution (3% NaCl 수용액중에서 복합조직강의 부식피로 파괴거동에 미치는 주파수변화의 영향)

  • O, Se-Uk;Sin, Gyu-Dong;Kim, Ung-Jip
    • Journal of Ocean Engineering and Technology
    • /
    • v.9 no.2
    • /
    • pp.141-148
    • /
    • 1995
  • Fatigue tests were carried out by a rotary bending testing machine of cantilever type. M.E.F.(ferrite encapsulated islands of martensite) materials were made by a series of heat treatment from a low carbon steel(SM 20 C). The fatigue tests were conducted at stress levels of 302 MPa and with frequencies of 25Hz, 2.5 Hz and 0.5 Hz in 3% NaCl solution. The fatigue strength increased with frequency got higher. The microcracks and corrosion pits were generated at the boundary between the matrix and the 2nd phase. The cracks generated by the corrosion pits were coalesced with the pits around the notch and became the initial crack. The $N_i/N_f$ ratio increased as the frequency and stress level decreased. The interference phenomenon increased with stress level and frequency gots higher. The crack propagation rate was delayed as the stress level lowers and the frequency gets higher, however, the range of the stress intensity factor depended only on a stress level.

  • PDF

Analysis of Weld Beads for Wall Thinning Defects in the Weld Zone of the Boost Pump Recirculation Pipe for Power Plants and Evaluation of Their Integrity (플랜트 승압펌프 재순환 배관 용접부의 용접비드에 의해 발생한 감육결함 분석 및 건전성 평가)

  • Nam, Ki-Woo;Ahn, Seok-Hwan;Do, Jae-Yoon
    • Journal of Ocean Engineering and Technology
    • /
    • v.24 no.4
    • /
    • pp.38-46
    • /
    • 2010
  • The wall thinning phenomenon of pipes was simulated as metal loss due to erosion and corrosion. Such wall thinning defects in the pipes of power plants are a very important safety consideration. In this study, we analyzed wall thinning defects that occurred by weld bead of weld zone of boost pump recirculation pipe. From the results of the analysis of pipe failures, numerical analysis was performed by Fluent v6.3.26 using the standard k-$\varepsilon$ model of the weld bead shape, such as an elliptical or a spherical shape, on the inner wall of the pipe. Using the results obtained, we showed the overlap effect by cavitations corrosion and erosion-corrosion at the bottom of the wall-thinning defect.

The Effect of Additive to Corrosion Resistance of Heavy Anti-Corrosive Paint (중방식 도료의 내식성에 미치는 첨가제의 영향)

  • Moon, Kyung-Man;Lee, Myung-Hoon;Kim, Hyun-Myung;Lee, In-Won;Jeon, Ho-Hwan
    • Proceedings of the Korea Committee for Ocean Resources and Engineering Conference
    • /
    • 2006.11a
    • /
    • pp.173-176
    • /
    • 2006
  • There are many kinds of protection methods for marine structures by using and environmental condition. Coating protection method, one of these methods is being widely adopted to both all ground and marine structures. In this study, by adding some additives such as Zn powder(Zn), carbon black(CB) to epoxy anti-corrosive paint, the effect to promote corrosion resistance was investigated with electrochemical method. Corrosion potentials with additives shifted to negative direction than no additive. However passivity current density increased than no additive except for Zn(20)+CB(10), especially, additive of Zn(20)+CB(10) showed the smallest passivity current density. Polarization resistance of Zn(20)+CB(10) by both cyclic voltammogram and impedance measurement was the largest value than other additives. And also surface phenomenon by adding Zn(20)+CB(10) was observed a good add condition not showing bubbling than other additives.

  • PDF

Review on Delayed Hydride Cracking and Stress Corrosion Cracking of Metals (합금속의 수소취성과 응력부식균열 고찰)

  • Kim, Young Suk;Cheong, Yong Moo;Im, Kyung Soo
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.15 no.4
    • /
    • pp.266-273
    • /
    • 2004
  • The objective of this study is an understanding of stress corrosion cracking of metals that is recognized to mostly limit the lifetime of the structural materials by comparing the features of delayed hydride cracking of zirconium alloys with those of stress corrosion cracking (SCC) of Ni-based alloys and hydrogen cracking of stainless steels. To this end, we investigated a dependence of delayed hydride cracking (DHC) velocity on the applied stress intensity factor and yield strength, and correlated a temperature dependence of the striation spacing and the DHC velocity. We reviewed a similarity of the features between the DHC of zirconium alloys, the SCC of Ni-based alloys and turbine rotor steels, and the hydrogen cracking of stainless steels and discussed the SCC phenomenon in metals with our DHC mode.

Effects of Platinum Nano Electrodeposits on the Corrosion of Carbon Substrate in an Acidic Environment (백금 나노 도금입자가 산성 환경에서 탄소기판 부식에 미치는 영향)

  • Choe, Min-Ho;Park, Chan-Jin
    • Proceedings of the Korean Institute of Surface Engineering Conference
    • /
    • 2008.11a
    • /
    • pp.34-35
    • /
    • 2008
  • We investigated the effects of Pt nano electrodeposits on the corrosion of carbon substrate in an acidic solution. The electrodes for experiments were prepared by electrodepositing Pt on carbon substrate in a solution of 5 mM $H_2PtCl_6$ and 0.5 M $H_2SO_4$ using pulse deposition technique. In cyclic voltammograms for the carbon electrodes with and without Pt nano electrodeposits, total anodic current including both currents from oxygen evolution reaction and carbon corrosion increased abruptly above a critical potential. In addition, the critical potential of the carbon electrodes with Pt nano electrodeposits was lower than that of bare carbon electrode. This phenomenon was more prominent at $75^{\circ}C$ than $25^{\circ}C$. In potentiostatic experiments, the current transients and the corresponding power spectral density increased with increasing the applied potential for the electrodes. Furthermore, the current transients for the carbon electrodes with Pt nano electrodeposits were much higher than those for the bare carbon substrate. This indicates that the corrosion of carbon substrate can be highly accelerated by Pt nano electrodeposits.

  • PDF

Analysis of High-Temperature Corrosion of Heat Exchanger Tubes in Biomass Circulating Fluidized Bed Boiler (바이오매스 순환유동층 보일러의 열교환기 고온 부식 특성)

  • Yujin Choi;Dal-hee Bae;Doyeon Lee
    • Korean Chemical Engineering Research
    • /
    • v.61 no.3
    • /
    • pp.419-425
    • /
    • 2023
  • This paper presents the research results of analyzing the high-temperature corrosion characteristics of three currently commercialized heat exchanger tube materials under actual operating conditions of a biomass power plant. In order to precisely analyze the high-temperature corrosion characteristics of these materials, a high-temperature corrosion evaluation device was installed in the power plant equipment, which allows for adjusting the surface temperature of the heat exchanger tubes. Experiments were conducted for approximately 300 hours under various temperature and operating conditions. In this study, the commercialized heat exchanger tube materials used were SA213T12, SA213T22, and SA213T91 alloys. In order to objectively analyze the high-temperature corrosion characteristics of each material, an international standard-based process to remove corrosion products was applied to obtain the weight change of the specimens, and the average thickness loss and corrosion rate were derived. Thus, the high-temperature corrosion results for each condition were quantitatively compared and analyzed. In addition, in order to increase the reliability of the high-temperature corrosion evaluation method introduced in this study, the surface and cross-sectional corrosion of the specimens were confirmed by using scanning electron microscopy and energy-dispersive X-ray analysis. Based on these analysis results, it was found that the corrosion resistance of the commercial heat exchanger materials increases as the content of chrome and nickel in the composition increases. Additionally, it was found that the corrosion phenomenon is rapidly accelerated as the surface temperature increases. Finally, the replacement period (lifetime) of the heat exchanger tubes under each condition could be inferred through this study.

A study on the characteristic of the Groove corrosion of ERW carbon steel according to water speed (유속에 따른 ERW 탄소강관의 홈부식 특성에 관한 연구)

  • Kim, Jae-Seong;Lee, Young-Ki;Kim, Yong;Lee, Bo-Young
    • Proceedings of the KWS Conference
    • /
    • 2009.11a
    • /
    • pp.82-82
    • /
    • 2009
  • Although leakage at a low carbon steel pipe made by electrical resistance welding(ERW) was reported due to grooving corrosion, the cause for the corrosion has not yet been cleared. So lots of researches were carried out already about grooving corrosion mechanism of ERW carbon steel pipe but there is seldom study for water hammer happened by fluid phenomenon and corrosion rate by flow velocity. In this study, the corrosion test carried out using the ERW carbon steel pipe by changed the water speed and heat input in a month. The level of dissolved oxygen is maintained 5~5.5mg/l(amount of dissolved oxygen in tap water). The water speed for corrosion test is 1m/s, 2m/s, 3m/s. As the results, grooving corrosion rate is increased cause by water speed in the pipe. In the case of the ERW pipe with more heat input, grooving corrosion rate is decreased. It is therefore that welding heat input should be controlled based on the carbon content of the pipe in order to improve the corrosion reistance of the ERW pipe.

  • PDF