• Title/Summary/Keyword: corrosion of reinforcing bar

Search Result 94, Processing Time 0.026 seconds

Tensile Behavior and Fracture Properties of Ductile Hybrid FRP Reinforcing Bar for Concrete Reinforcement (콘크리트 보강용 고연성 하이브리드 FRP 보강근의 인장 및 파괴 특성)

  • Park, Chan-Gi;Won, Jong-Pil
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.46 no.1
    • /
    • pp.41-51
    • /
    • 2004
  • FRP re-bar in concrete structures could be used as a substitute of steel re-bars for that cases in which aggressive environment produce high steel corrosion, or lightweight is an important design factor, or transportation cost increase significantly with the weight of the materials. But FRP fibers have only linearly elastic stress-strain behavior; whereas, steel re-bar has linear elastic behavior up to the yield point followed by large plastic deformation and strain hardening. Thus, the current FRP re-bars are not suitable concrete reinforcement where a large amount of plastic deformation prior to collapse is required. The main objectives of this study in to evaluate the tensile behavior and the fracture mode of hybrid FRP re-bar. Fracture mode of hybrid FRP re-bar is unique. The only feature common to the failure of the hybrid FRP re-bars and the composite is the random fiber fracture and multilevel fracture of sleeve fibers, and the resin laceration behavior in both the sleeve and the core areas. Also, the result of the tensile and interlaminar shear stress test results of hybrid FRP re-bar can provide its excellent tensile strength-strain and interlaminar stress-strain behavior.

Influence of Reinforcements on the Chloride Diffusion Analysis of Concrete Structures (철근의 영향을 고려한 콘크리트 구조물의 염소이온 확산해석)

  • 오병환;장봉석;이명규
    • Journal of the Korea Concrete Institute
    • /
    • v.14 no.6
    • /
    • pp.883-891
    • /
    • 2002
  • The chloride penetration in concrete structures is influenced by many factors such as types of cement and admixture proportion. Therefore, the effects of these factors on chloride diffusion must be correctly considered. The conventional diffusion analysis also neglected the existence of reinforcing bar in concrete structures. The purpose of the present paper is therefore to investigate the effect of reinforcing bar on the chloride diffusion in concrete structures. For this purpose, a comprehensive finite element analyses have been conducted to obtain chloride penetration profile. The results indicate that the chlorides are accumulated in front of a reinforcing bar and that the accumulation is much larger for the case of large diameter bars. The higher accumulation of chloride at bar location causes much faster corrosion of reinforcing steel. It can be concluded from the present study that the effects of reinforcing bars must be considered in chloride diffusion analysis for more realistic prediction of durable life of concrete structures.

An Evaluation of Reinforced Concrete Durability in Chloride Attack Environment under Sustained Load (염해 환경하에서 지속하중을 받는 철근콘크리트 부재의 내구성 평가)

  • Hong, Jun-Seo;Im, Chang-Hun;Yoon, Sang-Chun;Jee, Nam-Yong
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2001.11a
    • /
    • pp.1045-1050
    • /
    • 2001
  • This study was performed to evaluate reinforced concrete durability in chloride attack environment under sustained load by the corrosion of reinforcing bars and the permeation of chloride ion. Generally, it is regarded that permeability of chloride ion is determined by the properties of concrete, but the effects of load which make alternation of concrete inner structure such as crack and so on should not neglected. In this study, it is shown that the relation between bending load on RC beam, deflection and crack of specimen, permeation of chloride ion, rating of re-bar corrosion, and the relation between compression load and permeation of chloride ion. Therefore the effects of load on permeation of chloride ion and re-bar corrosion are evaluated.

  • PDF

Analysis of chloride penetration in the marine concrete pier (해양환경 콘크리트 교각의 염소이온 침투해석)

  • Kim, Ki-Hyun;Cha, Soo-Won;Jang, Sung-Yup;Park, Byoung-Sun;Chang, Sung-Pil
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2008.04a
    • /
    • pp.549-552
    • /
    • 2008
  • Corrosion of reinforcing steel is prohibited under normal condition by the alkalinity of the pore water in the concrete. But the probability of steel corrosion becomes higher when the chloride ions are introduced into the concrete. Steel corrosion is decisive factor for the determination of service life of the marine concrete structures because chloride ions are abundant in the sea. In this paper, chloride penetration analysis for the rectangular pier in the marine environment is performed considering the diffusion movement of chlorides. Result reveals that the chloride concentration in the corner bar is higher than that of in the side bar with rectangular pier. Also the time to the specified accumulation of chloride in the corner bar is much shorter than that in the side bar. Because the corrosion initiation time of corner bar is half as much as that of side bar, service life for the rectangular pier in marine environment should be determined with respect to the coner bar.

  • PDF

Evaluation of Durabilities in Ruined RC Bridge (철근콘크리트 철거교량의 내구성 평가)

  • 유환국;김국한;류금성;정영수
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1999.10a
    • /
    • pp.655-658
    • /
    • 1999
  • An experimental investigation on the ruined RC bridge with 30 years old has been conducted to estimate the durabilities. The ruined RC bridge estimated in this study was located at Kyung-Bu Express Way. First, concrete strength and durability characteristics such as concrete resistivity, chloride content were estimated. Second, it was to test reinforcing corrosion embedded in slab of bridge. And, third, tensile strength and yield strength of reinforcing bar corroded and not corroded were estimated. This bridge inspection provides the most common cause of defects and deterioration and the results of this inspections give more specific information than those of laboratory inspections do.

  • PDF

Evaluation of Performance of Protective Surface Coating for Concrete

  • Ahn, Tae Song;Cheong, Hai Moon
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2003.05a
    • /
    • pp.1061-1066
    • /
    • 2003
  • Chloride penetration into concrete is the main cause of the steel corrosion in concrete structures exposed to chloride-rich environments. Protective surface coatings are increasingly being applied to concrete structures to reduce chloride penetration. In this study, the performance of various surface coatings was evaluated. Most coatings showed good results for the various tests of the performance evaluation. Surface coatings can delay deterioration such as chloride-induced reinforcing bar corrosion effectively.

  • PDF

Study on the Amount of Critical Corrosion Products of Reinforcement inducing Concrete Cover Cracking with Finite Element Analysis (유한 요소법을 이용한 콘크리트 벽체 균열을 발생시키는 철근의 임계 부식량에 대한 연구)

  • 김광웅;장상엽;조용범;김용철;고영태
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2002.05a
    • /
    • pp.361-366
    • /
    • 2002
  • The deterioration of concrete structure due to corrosion of the reinforcement has created big financial losses on the overall industries. The volume expansion of the corrosion products causes internal pressure to concrete wall around reinforcing bar. If the maximum principal stress induced by internal pressure exceeds the tensile strength of the concrete at any point of time, a crack forms at any point of material. Therefore, in terms of life assessment of concrete structure, it is very important to predict the amount of corrosion products which induces initial concrete cracking. With this objective, this paper proposes the critical amount of corrosion products at interface between reinforcement and concrete using finite element analysis. If an actual survey of corrosion rates could be made, the model might supply information for condition assessment of existing concrete structure. As the mechanical properties of corrosion product and instantaneous geometry of corroded steel are considered in the analysis, the value obtained will be more realistic.

  • PDF

Modeling cover cracking due to rebar corrosion in RC members

  • Allampallewar, Satish B.;Srividya, A.
    • Structural Engineering and Mechanics
    • /
    • v.30 no.6
    • /
    • pp.713-732
    • /
    • 2008
  • Serviceability and durability of the concrete members can be seriously affected by the corrosion of steel rebar. Carbonation front and or chloride ingress can destroy the passive film on rebar and may set the corrosion (oxidation process). Depending on the level of oxidation (expansive corrosion products/rust) damage to the cover concrete takes place in the form of expansion, cracking and spalling or delamination. This makes the concrete unable to develop forces through bond and also become unprotected against further degradation from corrosion; and thus marks the end of service life for corrosion-affected structures. This paper presents an analytical model that predicts the weight loss of steel rebar and the corresponding time from onset of corrosion for the known corrosion rate and thus can be used for the determination of time to cover cracking in corrosion affected RC member. This model uses fully the thick-walled cylinder approach. The gradual crack propagation in radial directions (from inside) is considered when the circumferential tensile stresses at the inner surface of intact concrete have reached the tensile strength of concrete. The analysis is done separately with and without considering the stiffness of reinforcing steel and rust combine along with the assumption of zero residual strength of cracked concrete. The model accounts for the time required for corrosion products to fill a porous zone before they start inducing expansive pressure on the concrete surrounding the steel rebar. The capability of the model to produce the experimental trends is demonstrated by comparing the model's predictions with the results of experimental data published in the literature. The effect of considering the corroded reinforcing steel bar stiffness is demonstrated. A sensitivity analysis has also been carried out to show the influence of the various parameters. It has been found that material properties and their inter-relations significantly influence weight loss of rebar. Time to cover cracking from onset of corrosion for the same weight loss is influenced by corrosion rate and state of oxidation of corrosion product formed. Time to cover cracking from onset of corrosion is useful in making certain decisions pertaining to inspection, repair, rehabilitation, replacement and demolition of RC member/structure in corrosive environment.

The Effects of Cement Alkalinity upon the Pore Water Alkalinity and the Chloride Threshold Level of Reinforcing Steel in Concrete

  • Nam Jingak;Hartt William H.;Kim Kijoon
    • Journal of the Korea Concrete Institute
    • /
    • v.16 no.4 s.82
    • /
    • pp.549-555
    • /
    • 2004
  • Cement of three alkalinities (equivalent alkalinities of 0.36,0.52 and 0.97) was employed in fabricating a set of classical G109 type specimens. To-date, these have been subjected to a one week wet-one week dry cyclic pending using 15 w/o NaCl solution. At the end of the dry period, potential and macro-cell current were measured to indicate whether the top reinforcing steel was in the passive or active state. Once this bar became active, the specimen was autopsied and the extent of corrosion was documented. Subsequent to visual inspection, concrete powder samples were collected from the upper region of the top rebar trace; and at a certain times concrete cores were taken from non-reinforced specimens. Using these, determinations were made of (1) critical chloride concentration for corrosion initiation ($Cl_{th}^-$), (2) effective chloride diffusion coefficient ($D_e$), and (3) pore water alkalinity ($[OH^-]$). The pore water alkalinity was strongly related to the alkali content of cement that was used in the mix. The chloride concentration, ($Cl^-$), was greater at active than at passive sites, presumably as a consequence of electro migration and accumulation of these species at active site subsequent to corrosion initiation. Accordingly, ($Cl^-$) at passive sites was considered indicative of the threshold concentration fur corrosion initiation. The $Cl_{th}^-$ was increased with increasing Time-to-corrosion ($T_i$). Consequently, the HA(High Alkalinity) specimens exhibited the highest $Cl_{th}^-$ and the NA(Normal Alkalinity) was the least. This range exceeds what has previously been reported in North America. In addition, the effective diffusion coefficient, $D_e$, was about 40 percent lower for concrete prepared with the HA cement compared to the NA and LA(Low Alkalinity) ones.

The Corrosion Behavior of Rebar Embedded in Concrete With Chloride. (염화물 혼입에 따른 철근의 부식 거동)

  • Kim, Myung-Yu;Kim, Il-Sun;Jin, Sang-Ho;Yang, Eun-Ik;Lee, Sung-Tae
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2008.04a
    • /
    • pp.1069-1072
    • /
    • 2008
  • As embedded reinforcing suffer from corrosion process, the bond strength and stiffness are reduced, and the structure proceed, eventually, to the deterioration of the concrete, shortening the service life of concrete structures rapidly. In order to deal with these problems, a multitude of researches have been carried out up to this date to evaluate the bond characteristics of RC members, i.e. by artificially inducing rapid corrosion of the reinforcing bar. These artificial corrosion methods, however, could not represent the real condition, resulting in the possibility of overestimation for the RC members in real situation. Accordingly, the purpose of this paper is to investigate the difference in the bond characteristics for RC members corroded by different corrosion methods (artificial rapid method, natural method). For the case of natural corrosion, the brittle failure was observedeven for the case of the area ofcorrosion of 50%. And, the bond strength decreased by about 10% or more for the caseofspecimens with the area of corrosion of 80% or above. Especially, the deterioration of concrete starts at the state of low corrosion level for the case of natural corrosion. Thus, the safety of RC members must be assessed and evaluated more carefully for the naturally corroded members than for the RC concrete members corroded rapidly by artificial method.

  • PDF