• Title/Summary/Keyword: corrosion behaviors

Search Result 266, Processing Time 0.024 seconds

The effect of inhibitors affecting to corrosion behaviors and hydrogen embrittlement behaviors due to over-propection of a 4340 steel in 3% NaCl solution (3% NaCl용액중에 있어서 4340강의 부식거동과 과방식에 의한 수소포화거동에 미치는 인히비타의 영향)

  • 문경만;백태실;이상태
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.13 no.4
    • /
    • pp.54-62
    • /
    • 1989
  • When some kinds of inhibitors, i.e. $1{\times}10{-3}mol/l$ arsenic trioxide, 0.2 mol/l 2-mercaptoethanol, 0.2mol/l thiourea were added to 3% NaCl solution, there were some considererable effects to decrease corrosion current density in natural potential condition and the effect fo solution temperature increasing corrosion rate was smaller than that of no addition to 3% NaCl solution. However the susceptibility of hydrogen embrittlement due to over-protection in case of cathodic protection was much greater than that of no addition, especially was the greatest in case of addition of 2-mercaptoethanol. Therefore adding inhibitors for anti-corrosion effect, it is suggested that selection of the optimum protection potential is important from the view point of prevention against hydrogen embrittlement due to over-protection in case of cathodic protection.

  • PDF

Effect of Alloying Elements (Cu, Al, Si) on the Electrochemical Corrosion Behaviors of TWIP Steel in a 3.5 % NaCl Solution (3.5% NaCl 수용액 내 TWIP강의 부식거동에 미치는 합금원소 (Cu, Al, Si)의 영향)

  • Kim, Si-On;Hwang, Joong-Ki;Kim, Sung Jin
    • Corrosion Science and Technology
    • /
    • v.18 no.6
    • /
    • pp.300-311
    • /
    • 2019
  • The corrosion behaviors of twinning-induced plasticity (TWIP) steels with different alloying elements (Cu, Al, Si) in a neutral aqueous environment were investigated in terms of the characteristics of the corrosion products formed on the steel surface. The corrosion behavior was evaluated by measuring potentiodynamic polarization test and electrochemical impedance spectroscopy. For compositional analysis of the corrosion products formed on the steel surface, an electron probe x-ray micro analyzer was also utilized. This study showed that the addition of Cu to the steel contributed to the increase in corrosion resistance to a certain extent by the presence of metallic Cu in discontinuous form at the oxide/steel interface. Compared to the case of steel with Cu, the Al-bearing specimen exhibited much higher polarization resistance and lower corrosion current by the formation of a thin Al-enriched oxide layer. On the other hand, Si addition (3.0 wt%) to the steel led to an increase in grain size, which was twice as large as that of the other specimens, resulting in a deterioration of the corrosion resistance. This was closely associated with the localized corrosion attacks along the grain boundaries by the formation of a galvanic couple with a large cathode-small anode.

Effect of Si on the Corrosion Properties of Mg-Li-Al Light Alloy (경량화 Mg-Li-Al합금의 내식성에 미치는 Si의 영향)

  • 김순호
    • Resources Recycling
    • /
    • v.7 no.5
    • /
    • pp.52-57
    • /
    • 1998
  • Effect of Si in the electrochemical corrosion characteristics of Mg-Li-Al light alloy has been investigated by means of potentiodynamic polarization study. The elecrochemical behaviors were evaluated in 003% NaCl solution and the solution buffered with KH$_{2}PO_{5}{\cdot}$NaOH at room temperature. It was found that the addition of very small quantity of Si (0.48 wt%) in Mg-Li-Al light alloy increased corrosion rates and amount of corrosion products and decreated the pitting resistance of the alloy. From the results it was concluded that Si which is added to increase the strength of Mg-Li-Al alloy is harmful to corrosion properties of the alloy.

  • PDF

Effects of Chloride and Sulfate Ions on Corrosion Behaviors of Structural Materials Based on Design of Experiment (실험계획에 기반한 수돗물 성분(Chloride and Sulfate Ions)의 구조재료 부식 영향성 고찰)

  • Dong-In Lim;Heng-Su Noh;Hyeok-Jun Kwon;Sung-Ryul Park;Man-Sik Jo;Doo-Youl Lee
    • Corrosion Science and Technology
    • /
    • v.22 no.3
    • /
    • pp.201-213
    • /
    • 2023
  • Corrosion management of an aircraft and its engine relies on rinsing and cleaning using tap water. Few studies have reported effects of tap water species on corrosion behaviors of structural materials. In this study, a series of experiments were conducted based on the design of experiment. Solutions with different levels of chloride and sulfate ions were prepared using a full factorial design. Two structural materials (aluminum alloy and steel) were used for an alternate immersion test. Weight loss was then measured. In addition, a silver specimen was utilized as a sensor for chloride deposition measurement. The silver specimen was examined using the electrochemical reduction method, XPS, and SEM-EDS. Surface analysis revealed that levels of chloride and sulfate ions were sufficient for the formation of silver chloride and silver surface. Statistical analysis of weight loss and chloride deposition rate showed significant differences in measured values. Concentration of chloride ions greatly affected corrosion behaviors of structural materials. Sulfate ion hindered the adsorption reaction. These results emphasize the importance of controlling ion concentration of tap water used for cleaning and rinsing an aircraft.

Corrosion Behaviors of Dental Implant Alloy after Micro-sized Surface Modification in Electrolytes Containing Mn Ion

  • Kang, Jung-In;Son, Mee-Kyoung;Choe, Han-Cheol
    • Journal of Korean Dental Science
    • /
    • v.11 no.2
    • /
    • pp.71-81
    • /
    • 2018
  • Purpose: The purpose of this study was to investigate the corrosion behaviors of dental implant alloy after microsized surface modification in electrolytes containing Mn ion. Materials and Methods: $Mn-TiO_2$ coatings were prepared on the Ti-6Al-4V alloy for dental implants using a plasma electrolytic oxidation (PEO) method carried out in electrolytes containing different concentrations of Mn, namely, 0%, 5%, and 20%. Potentiodynamic method was employed to examine the corrosion behaviors, and the alternatingcurrent (AC) impedance behaviors were examined in 0.9% NaCl solution at $36.5^{\circ}C{\pm}1.0^{\circ}C$ using a potentiostat and an electrochemical impedance spectroscope. The potentiodynamic test was performed with a scanning rate of $1.667mV\;s^{-1}$ from -1,500 to 2,000 mV. A frequency range of $10^{-1}$ to $10^5Hz$ was used for the electrochemical impedance spectroscopy (EIS) measurements. The amplitude of the AC signal was 10 mV, and 5 points per decade were used. The morphology and structure of the samples were examined using field-emission scanning electron microscopy and thin-film X-ray diffraction. The elemental analysis was performed using energy-dispersive X-ray spectroscopy. Result: The PEO-treated surface exhibited an irregular pore shape, and the pore size and number of the pores increased with an increase in the Mn concentration. For the PEO-treated surface, a higher corrosion current density ($I_{corr}$) and a lower corrosion potential ($E_{corr}$) was obtained as compared to that of the bulk surface. However, the current density in the passive regions ($I_{pass}$) was found to be more stable for the PEO-treated surface than that of the bulk surface. As the Mn concentration increased, the capacitance values of the outer porous layer and the barrier layer decreased, and the polarization resistance of the barrier layers increased. In the case of the Mn/Ca-P coatings, the corroded surface was found to be covered with corrosion products. Conclusion: It is confirmed that corrosion resistance and polarization resistance of PEO-treated alloy increased as Mn content increased, and PEO-treated surface showed lower current density in the passive region.

Corrosion Behaviors of 316L Stainless Steel Bipolar Plate of PEMFC and Measurements of Interfacial Contact Resistance(ICR) between Gas Diffusion Layer(GDL) and Bipolar Plate (고분자 전해질 연료전지 금속분리판 316L 스테인리스강의 부식거동 및 기체확산층(GDL)과의 계면접촉저항 측정)

  • Oh, In-Hwan;Lee, Jae-Bong
    • Corrosion Science and Technology
    • /
    • v.9 no.3
    • /
    • pp.129-136
    • /
    • 2010
  • The corrosion behaviors of 316L stainless steel were investigated in simulated anodic and cathodic environments for proton exchange membrane fuel cell (PEMFC) by using electrochemical measurement techniques. Interfacial contact resistance(ICR) between the stainless steel and gas diffusion layer(GDL) was also measured. The possibility of 316L was evaluated as a substitute material for the graphite bipolar plate of PEMFC. The value of ICR decreased with an increase in compaction stress(20 N/$cm^2$~220 N/$cm^2$) showing the higher values than the required value in PEMFC condition. Although 316L was spontaneously passivated in simulated cathodic environment, its passive state was unstable in simulated anodic environment. Potentiostatic and electrochemical impedance spectroscopy (EIS) measurement results showed that the corrosion resistance in cathodic condition was higher and more stable than that in anodic condition. Field emission scanning electron microscopy (FE-SEM), and inductively coupled plasma(ICP) were used to analyze the surface morphology and the metal ion concentration in electrolytes.

Microstructure and Corrosion Behavior of Zr Alloys with Manufacturing Process (핵연료피복관용 Zr 합금의 제조공정에 따른 미세조직 및 부식거동)

  • Kim, H.G.;Choi, B.K.;Kim, K.T.;Kim, S.D.;Park, C.H.;Jeong, Y.H.
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.18 no.5
    • /
    • pp.288-296
    • /
    • 2005
  • The corrosion behaviors of Zr-based alloys were very sensitive to their microstructures which were determined by manufacturing process. The specimens of Zr-based alloy named as HANA-4 for nuclear fuel cladding were investigated in order to get the optimized manufacturing process such as the intermediate annealing temperature and cold working steps after the ${\beta}$ quenching. From the microstructural analysis, cold worked microstructure of the samples was changed to the recrystallized microstructure by performed process. The corrosion behaviors of HANA-4 alloy were affected by the different manufacturing process. The ${\beta}$-Zr phase was formed in the matrix and the Nb concentration in the ${\beta}$-Zr phase was increased as progressing the manufacturing process. So, it was found that the corrosion rate of HANA-4 alloy was affected by the Nb concentration in the matrix.

Effects of Cooling Rates of Coating Layer on Microstructures and Corrosion Behaviors of Zn-Al-Mg Alloy Coated Steel Sheets (Zn-Al-Mg 합금도금강판의 도금 층 냉각속도 제어에 따른 미세조직 및 부식거동 분석)

  • Lee, Jae-Won;Kim, Sung Jin
    • Corrosion Science and Technology
    • /
    • v.21 no.3
    • /
    • pp.221-229
    • /
    • 2022
  • To understand effects of cooling rates of coating layer on microstructures and corrosion behaviors of hot-dip alloy coated steel sheets (Zn-5%Al-2%Mg) in a neutral aqueous condition with chloride ion, a range of experimental and analytical methods were used in this study. Results showed that a faster cooling rate during solidification decreased the fraction of primary Zn, and increased the fraction of Zn-Al phase. In addition, interlamellar spacing became refined under a faster cooling rate. These modifications of the coating structure had higher open circuit potentials (OCP) with smaller anodic and cathodic current densities in the electrochemical potentiodynamic polarization. Surface analyses after a salt spray test showed that the increase in the Zn-Al phase in the coating formed under a faster cooling rate might have contributed to the formation of simonkolleite (Zn5(OH)8Cl2·H2O) and hydrotalcite (ZnAl2(OH)6Cl2·H2O) with a protective nature on the corroded outer surface, thus delaying the formation of red rust.

The Effects of 3.5% NaCl Aqueous Solution Temperature on the Corrosion Fatigue Fracture of Dual phase steel (3.5% NaCl 수용액의 온도변화가 복합조직강의 부식피로파괴에 미치는 영향)

  • 오세욱;도영문;박수영;김재철;김광영
    • Journal of Ocean Engineering and Technology
    • /
    • v.6 no.1
    • /
    • pp.140-147
    • /
    • 1992
  • Corrsion fatigue test was performed under rotated bending in 3.5% NaCl aqueous solution having a temperature from 278.deg.K in order to investigate the effects of aqueous solution remperature on the corrosion fatigue fracture of raw material steel(SS41) and dual phase steel that was produced from SS41 by a series of heat treatment. Corrosion fatigue life decreases remarkably with increase in solution temperature or with decrease in stress level. The corrosion fatigue life and the crack propagation rate at 303.deg.K show the similar behaviors with those at 318.deg.K, which is assumed to be caused by concentration polarization phenamena. The number and the lengths of microcracks increase with increase in solution temperature, so they lead to the decrease in corrosion fatigue life.

  • PDF

Effect of Local Wall Thinned Location due to Erosion-Corrosion on Fracture Behavior of Pipes (침식-부식에 의해 감육된 배관의 파손거동에 미치는 감육위치의 영향)

  • Ahn, Seok-Hwan;Seok, Kum-Cheol;Nam, Ki-Woo
    • Journal of Ocean Engineering and Technology
    • /
    • v.21 no.1 s.74
    • /
    • pp.51-58
    • /
    • 2007
  • This study on the effects of local wall-thinned location on the fracture behavior of pipes was carried out, and the results were compared with the analytical results. Local wall-thinning for the bending test was machined with various sizes on the outside of pipes, in order to simulate the metal loss, due to erosion/corrosion. In addition, we had carried out FE analysis for the pipes with local wall thinning on the inside, and its results were comparatively studied with that of the outside. Three-dimensional elasto-plastic analyses were able to accurately simulate fracture behaviors of inner or outer wall thinning. Fracture types, obtained from the experiments and analyses, could be classified into ovalization, local buckling and crack initiation, depending on the thinned length and thinned ratio. Based on the results, the fracture behaviors of pipes with the outer wall thinning can be applied to estimate the fracture behaviors of pipes with the inner wall thinning.