DOI QR코드

DOI QR Code

Effects of Chloride and Sulfate Ions on Corrosion Behaviors of Structural Materials Based on Design of Experiment

실험계획에 기반한 수돗물 성분(Chloride and Sulfate Ions)의 구조재료 부식 영향성 고찰

  • Dong-In Lim (Aero Technology Research Institute, Republic of Korea Air Force) ;
  • Heng-Su Noh (Aero Technology Research Institute, Republic of Korea Air Force) ;
  • Hyeok-Jun Kwon (Department of Materials Science and Engineering, Yonsei University) ;
  • Sung-Ryul Park (Aero Technology Research Institute, Republic of Korea Air Force) ;
  • Man-Sik Jo (Aero Technology Research Institute, Republic of Korea Air Force) ;
  • Doo-Youl Lee (Department of Defense Science, Korea National Defense University)
  • Received : 2022.12.01
  • Accepted : 2023.04.13
  • Published : 2023.06.30

Abstract

Corrosion management of an aircraft and its engine relies on rinsing and cleaning using tap water. Few studies have reported effects of tap water species on corrosion behaviors of structural materials. In this study, a series of experiments were conducted based on the design of experiment. Solutions with different levels of chloride and sulfate ions were prepared using a full factorial design. Two structural materials (aluminum alloy and steel) were used for an alternate immersion test. Weight loss was then measured. In addition, a silver specimen was utilized as a sensor for chloride deposition measurement. The silver specimen was examined using the electrochemical reduction method, XPS, and SEM-EDS. Surface analysis revealed that levels of chloride and sulfate ions were sufficient for the formation of silver chloride and silver surface. Statistical analysis of weight loss and chloride deposition rate showed significant differences in measured values. Concentration of chloride ions greatly affected corrosion behaviors of structural materials. Sulfate ion hindered the adsorption reaction. These results emphasize the importance of controlling ion concentration of tap water used for cleaning and rinsing an aircraft.

Keywords

References

  1. Y. Garbatov, C. G. Soares, J. Parunov, and J. Kodvanj, Tensile strength assessment of corroded small scale specimens, Corrossion Science, 85, 296 (2014). Doi: https://doi.org/10.1016/j.corsci.2014.04.031
  2. Y. Oktavianus, M. Sofi, E. Lumantarna, G. Kusuma, and C. Duffield, Long-term performance of trestle bridges: case study of an indonesian marine port structure, Journal of Marine Science and Engineering, 8, 358 (2020). Doi: https://doi.org/10.3390/jmse8050358
  3. J. Park, J. Lee, K. Lee, J. Kim, M. Jung and J. Lee, Evaluation of Life Time for Anti-Corrosive Methods for Marine Steel Sheet by Cyclic Corrosion Test, Corrosion Science and Technology, 8, 243 (2009). https://www.jcst.org/opensource/pdfjs/web/pdf_viewer.htm?code=C00080600243
  4. J. Ha, Anti-corrosion Technology for Life Extension of Fossil Power Plant, Journal of the Corrosion Science Society of Korea, 27, 331 (1998). https://www.j-cst.org/opensource/pdfjs/web/pdf_viewer.htm?code=J00270300331
  5. U. S. Air Force, Technical Manual: Cleaning and corrosion prevention and control, Aerospace and Non-Aerospace Equipment, TO 1-1-691, Change 19 (2022).
  6. S. Yoon, J. Kim, Y. Jin and C. Park, Effects of Phosphate Coating on Corrosion Resistance of Painted Cold-Rolled Steel Sheet, Journal of the Corrosion Science Society of Korea, 16, 3 (1987). https://www.j-cst.org/opensource/pdfjs/web/pdf_viewer.htm?code=J00160100003 100003
  7. S. Park, J. Yoon, D. Lee, S. Yoon, and S. Kim, Proc. 2020 Spring Conf., p. 336, The Korea Society for Aeronautical and Space Science, Gangwon, Korea (2020). https://www.dbpia.co.kr/pdf/pdfView.do?nodeId=NODE10442156
  8. W. Park, P. Gook, Y. Cho and C. Bahn, Wash Interval Optimization to Prevent Atmospheric Corrosion of Korean Aircrafts Made of Aluminum Alloys, Corrosion Science and Technology, 15, 189 (2016). Doi: https://doi.org/10.14773/cst.2016.15.4.189
  9. GAO-11-171R, Defense Management: DOD Needs to Monitor and Assess Corrective Actions Resulting from its Corrosion Study of the F-35 Joint Strike Fighter, U. S. Government Accountability Office, Washington D. C., USA (2010). https://www.gao.gov/products/gao-11-171r
  10. ISO 9223, Corrosion of metals and alloys - Corrosivity of atmospheres - Classification, determination and estimation (2012).
  11. M. S. Reddy and C. Venkataraman, Inventory of aerosol and sulphur dioxide emissions from India: I Fossil fuel combustion, Atmospheric Environment, 36, 677 (2002). Doi: https://doi.org/10.1016/S1352-2310(01)00463-0
  12. C. Leygraf, T. Graedel, Atmospheric Corrosion, 3rd ed., 40, Wiley-interscience, NY (2000).
  13. T. E. Graedel and W. C. Keene, Tropospheric budget of reactive chlorine, Global Biogeochemical Cycles, 9, 47 (1995). Doi: https://doi.org/10.1029/94GB03103
  14. J. Yun, D. Lee, S. Park, M. Kim, and D. Choi, The Effect of Aircraft Parking Environment on Atmospheric Corrosion Severity, Corrosion Science and Technology, 20, 94 (2021). Doi: https://doi.org/10.14773/cst.2021.20.2.94
  15. D. C. Montgomery, Design and Analysis of Experiments, 8th ed., John Wiley & Sons, Hoboken (2017). Doi: https://books.google.co.kr/books?id=Py7bDgAAQBAJ
  16. H. Lin, G. S. Frankel, and W. H. Abbott, Analysis of Ag Corrosion Products, Journal of The Electrochemical Society, 160, C345 (2013). Doi: https://doi.org/10.1149/2.055308jes
  17. T. D. Burleigh and R. M. Latanision, The use of photocurrents to characterize anodic films on Ti, Zr, Cu, and 304 stainless steel, Journal of the Electrochemical Society, 134, 135 (1987). Doi: https://doi.org/10.1149/1.2100391
  18. D. de la Fuente, E. Otero-Huerta, and M. Morcillo, Studies of long-term weathering of aluminum in the atmosphere, Corrosion Science, 49, 3134 (2007). Doi: https://doi.org/10.1016/j.corsci.2007.01.006
  19. R. T. Foley, Localized corrosion of aluminum alloys-a review, Corrosion, 42, 277 (1986). Doi: https://doi.org/10.5006/1.3584905
  20. ASTM B825-13, Standard Test Method for Coulometric Reduction of Surface Films on Metallic Test Samples (2013).
  21. ASTM G1-03, Standard Practice for Preparing, Cleaning, and Evaluating Corrosion Test Specimens (2012).
  22. L. Yang, Y. Xu, Y. Zhu, L. Liu, X. Wang, and Y. Huang, Evaluation of Interaction Effect of Sulfate and Chloride Ions on Reinforcements in Simulated Marine Environment Using Electrochemical Methods, International Journal of Electrochemical Science, 11, 6943 (2016). Doi: https://doi.org/10.20964/2016.08.51
  23. F. Shaheen and B. Pradhan, Effect of chloride and conjoint chloride-sulfate ions on corrosion of reinforcing steel in electrolytic concrete powder solution (ECPS), Construction and Building Materials, 101, 99 (2015). Doi: https://doi.org/10.1016/j.conbuildmat.2015.10.028
  24. S. I. Pyun, S. M. Moon, S. H. Ahn, and S. S. Kim, Effects of Cl-, NO3 and SO2-4 ions on anodic dissolution of pure aluminum in alkaline solution, Corrosion Science, 41, 653 (1999). Doi: https://doi.org/10.1016/S0010-938X(98)00132-2
  25. S. Arzola, M. E. Palomar-pardave, and J. Genesca, Effect of resistivity on the corrosion mechanism of mild steel in sodium sulfate, Journal of Applied Electrochemistry, 33, 1233 (2003). Doi: https://doi.org/10.1023/B:JACH.0000003855.95788.12
  26. W. Choi, D. Lee, and C. B. Bahn, Quantitative Analysis Methods of Chloride Deposition on Silver for Atmospheric Corrosion Monitoring in South Korea, Corrosion, 77, 53 (2021). Doi: https://doi.org/10.5006/3622
  27. Y. W. Song, D. Y. Shan, and E. H. Han, Comparative Study on Corrosion Protection Properties of Electroless Ni-P-ZrO2 and Ni-P Coatings on AZ91D Magnesium Alloy, Materials and Corrosion, 58, 506 (2007). Doi: https://doi.org/10.1002/maco.200604033
  28. G. T. Shim, Y. H. Kwon, and Y. S. Kim, Evaluation of Corrosion Properties of Several Metals in Waters for Reference Standard on Corrosion Rate - I. Andong Area, Corrosion Science and Technology, 8, 238 (2009). https://koreascience.kr/article/JAKO200921161886201.page
  29. L. Le, M. Sofi, E. Lumantarna, The combined effect of stress and corrosion on mild steel, Journal of Constructional Steel Research, 185, 106805 (2021). Doi: https://doi.org/10.1016/j.jcsr.2021.106805
  30. R. Songbo, G. Ying, K. Chao, G. Song, X. Shanhua, and Y. Liqiong, Effects of the corrosion pitting parameters on the mechanical properties of corroded steel, Construction and Building Materials, 272, 121941 (2021). Doi: https://doi.org/10.1016/j.conbuildmat.2020.121941
  31. A. Venugopal, R. Mohammad, M. F. S. Koslan, S. R. S. Bakar, and A. Ali, The Effect of Tropical Environment on Fatigue Failure in Royal Malaysian Airforce (RMAF) Aircraft Structure and Operational Readiness, Materials, 14, 2414 (2021). Doi: https://doi.org/10.3390/ma14092414
  32. X. Liu, W. Zhang, X. Gu, and Z. Ye, Probability distribution model of stress impact factor for corrosion pits of high-strength prestressing wires, Engineering Structures, 230, 111686 (2021). Doi: https://doi.org/10.1016/j.engstruct.2020.111686
  33. C. Sanders, Bayesian network modeling approach to cumulative damage modeling of aircraft coatings, SERDP Project Overview, WP19-1289 (2021). https://www.serdp-estcp.org/toolsandtraining/details/6ba027ef8fff-4782-b1ce-20c13a7c03ca/corrosion-mitigation-andpredictive-analysis-for-dod-weapons-systems
  34. D. Lee, D. Lim, H. Kim, and Seil Baek, Bayesian method for estimating initial crack size distribution for probabilistic risk analysis of repairable structural details, Fatigue & Fracture of Engineering Materials & Structures, 45, 2356 (2022). Doi: https://doi.org/10.1111/ffe.13751