• Title/Summary/Keyword: correlation feature analysis

Search Result 245, Processing Time 0.026 seconds

Content-based Image Retrieval Using Texture Features Extracted from Local Energy and Local Correlation of Gabor Transformed Images

  • Bu, Hee-Hyung;Kim, Nam-Chul;Lee, Bae-Ho;Kim, Sung-Ho
    • Journal of Information Processing Systems
    • /
    • v.13 no.5
    • /
    • pp.1372-1381
    • /
    • 2017
  • In this paper, a texture feature extraction method using local energy and local correlation of Gabor transformed images is proposed and applied to an image retrieval system. The Gabor wavelet is known to be similar to the response of the human visual system. The outputs of the Gabor transformation are robust to variants of object size and illumination. Due to such advantages, it has been actively studied in various fields such as image retrieval, classification, analysis, etc. In this paper, in order to fully exploit the superior aspects of Gabor wavelet, local energy and local correlation features are extracted from Gabor transformed images and then applied to an image retrieval system. Some experiments are conducted to compare the performance of the proposed method with those of the conventional Gabor method and the popular rotation-invariant uniform local binary pattern (RULBP) method in terms of precision vs recall. The Mahalanobis distance is used to measure the similarity between a query image and a database (DB) image. Experimental results for Corel DB and VisTex DB show that the proposed method is superior to the conventional Gabor method. The proposed method also yields precision and recall 6.58% and 3.66% higher on average in Corel DB, respectively, and 4.87% and 3.37% higher on average in VisTex DB, respectively, than the popular RULBP method.

Climate Prediction by a Hybrid Method with Emphasizing Future Precipitation Change of East Asia

  • Lim, Yae-Ji;Jo, Seong-Il;Lee, Jae-Yong;Oh, Hee-Seok;Kang, Hyun-Suk
    • The Korean Journal of Applied Statistics
    • /
    • v.22 no.6
    • /
    • pp.1143-1152
    • /
    • 2009
  • A canonical correlation analysis(CCA)-based method is proposed for prediction of future climate change which combines information from ensembles of atmosphere-ocean general circulation models(AOGCMs) and observed climate values. This paper focuses on predictions of future climate on a regional scale which are of potential economic values. The proposed method is obtained by coupling the classical CCA with empirical orthogonal functions(EOF) for dimension reduction. Furthermore, we generate a distribution of climate responses, so that extreme events as well as a general feature such as long tails and unimodality can be revealed through the distribution. Results from real data examples demonstrate the promising empirical properties of the proposed approaches.

The characteristic analysis of EEG artifacts (EEG 잡파 특성 분석)

  • Yang, Eun-Joo;Shin, Dong-Sun;Kim, Eung-Soo
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.12 no.4
    • /
    • pp.366-372
    • /
    • 2002
  • EEG is the electrical signal, which is occurred during information processing in the brain. These EEG signal are measured by non-invasive method. EEG has many useful information for brain activity, but artifacts which are included in EEG prevents EEG analysis, so many efforts are devoted to remove these artifacts in EEG. However, this study is going to analysis the feature of the EEG mixed with artifacts in forward-looking way, by using this way, we have found the possibility that is actually applicable to system such as control system. We have made feature difference after the linear as well as nonlinear analysis regarding EEG including typical artifacts, eye-blinking, eye rolling, muscle, and so forth.

Language Identification by Fusion of Gabor, MDLC, and Co-Occurrence Features (Gabor, MDLC, Co-Occurrence 특징의 융합에 의한 언어 인식)

  • Jang, Ick-Hoon;Kim, Ji-Hong
    • Journal of Korea Multimedia Society
    • /
    • v.17 no.3
    • /
    • pp.277-286
    • /
    • 2014
  • In this paper, we propose a texture feature-based language identification by fusion of Gabor, MDLC (multi-lag directional local correlation), and co-occurrence features. In the proposed method, for a test image, Gabor magnitude images are first obtained by Gabor transform followed by magnitude operator. Moments for the Gabor magniude images are then computed and vectorized. MDLC images are then obtained by MDLC operator and their moments are computed and vectorized. GLCM (gray-level co-occurrence matrix) is next calculated from the test image and co-occurrence features are computed using the GLCM, and the features are also vectorized. The three vectors of the Gabor, MDLC, and co-occurrence features are fused into a feature vector. In classification, the WPCA (whitened principal component analysis) classifier, which is usually adopted in the face identification, searches the training feature vector most similar to the test feature vector. We evaluate the performance of our method by examining averaged identification rates for a test document image DB obtained by scanning of documents with 15 languages. Experimental results show that the proposed method yields excellent language identification with rather low feature dimension for the test DB.

Speaker Identification Using PCA Fuzzy Mixture Model (PCA 퍼지 혼합 모델을 이용한 화자 식별)

  • Lee, Ki-Yong
    • Speech Sciences
    • /
    • v.10 no.4
    • /
    • pp.149-157
    • /
    • 2003
  • In this paper, we proposed the principal component analysis (PCA) fuzzy mixture model for speaker identification. A PCA fuzzy mixture model is derived from the combination of the PCA and the fuzzy version of mixture model with diagonal covariance matrices. In this method, the feature vectors are first transformed by each speaker's PCA transformation matrix to reduce the correlation among the elements. Then, the fuzzy mixture model for speaker is obtained from these transformed feature vectors with reduced dimensions. The orthogonal Gaussian Mixture Model (GMM) can be derived as a special case of PCA fuzzy mixture model. In our experiments, with having the number of mixtures equal, the proposed method requires less training time and less storage as well as shows better speaker identification rate compared to the conventional GMM. Also, the proposed one shows equal or better identification performance than the orthogonal GMM does.

  • PDF

2D Industrial Image Registration Method for the Detection of Defects (결함 검출을 위한 2차원 산업 영상 정합 기법)

  • Lee, Youngjoo;Lee, Jeongjin
    • Journal of Korea Multimedia Society
    • /
    • v.15 no.11
    • /
    • pp.1369-1376
    • /
    • 2012
  • In this paper, we propose 2D industrial image registration method for the detection of defects. Proposed method performs preprocessing to smooth the original image with the preservation of the edge for the robust registration against general noise. Then, x-direction gradient magnitude image and corresponding binary image are generated. Density analysis around neighborhood regions per pixel are performed to generate feature image for preventing mis-registration due to moire-like patterns, which frequently happen in industrial images. Finally, 2D image registration based on phase correlation between feature images is performed to calculate translational parameters to align two images rapidly and optimally. Experimental results showed that the registration accuracy of proposed method for the real industrial images was 100% and our method was about twenty times faster than the previous method. Our fast and accurate method could be used for the real industrial applications.

Investigating Opinion Mining Performance by Combining Feature Selection Methods with Word Embedding and BOW (Bag-of-Words) (속성선택방법과 워드임베딩 및 BOW (Bag-of-Words)를 결합한 오피니언 마이닝 성과에 관한 연구)

  • Eo, Kyun Sun;Lee, Kun Chang
    • Journal of Digital Convergence
    • /
    • v.17 no.2
    • /
    • pp.163-170
    • /
    • 2019
  • Over the past decade, the development of the Web explosively increased the data. Feature selection step is an important step in extracting valuable data from a large amount of data. This study proposes a novel opinion mining model based on combining feature selection (FS) methods with Word embedding to vector (Word2vec) and BOW (Bag-of-words). FS methods adopted for this study are CFS (Correlation based FS) and IG (Information Gain). To select an optimal FS method, a number of classifiers ranging from LR (logistic regression), NN (neural network), NBN (naive Bayesian network) to RF (random forest), RS (random subspace), ST (stacking). Empirical results with electronics and kitchen datasets showed that LR and ST classifiers combined with IG applied to BOW features yield best performance in opinion mining. Results with laptop and restaurant datasets revealed that the RF classifier using IG applied to Word2vec features represents best performance in opinion mining.

Chaotic Evaluation of Slag Inclusion Welding Defect Time Series Signals Considering the Hyperspace (초공간을 고려한 슬래그 혼입 용접 결함 시계열 신호의 카오스성 평가)

  • Yi, Won;Yun, In-Sik
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.15 no.12
    • /
    • pp.226-235
    • /
    • 1998
  • This study proposes the analysis and evaluation of method of time series of ultrasonic signal using the chaotic feature extraction for ultrasonic pattern recognition. The features are extracted from time series data for analysis of weld defects quantitatively. For this purpose, analysis objectives in this study are fractal dimension, Lyapunov exponent, and strange attractor on hyperspace. The Lyapunov exponent is a measure of rate in which phase space diverges nearby trajectories. Chaotic trajectories have at least one positive Lyapunov exponent, and the fractal dimension appears as a metric space such as the phase space trajectory of a dynamical system. In experiment, fractal(correlation) dimensions and Lyapunov exponents show the mean value of 4.663, and 0.093 relatively in case of learning, while the mean value of 4.926, and 0.090 in case of testing in slag inclusion(weld defects) are shown. Therefore, the proposed chaotic feature extraction can be enhancement of precision rate for ultrasonic pattern recognition in defecting signals of weld zone, such as slag inclusion.

  • PDF

Performance Improvement of Speech Recognition Based on Independent Component Analysis (독립성분분석법을 이용한 음성인식기의 성능향상)

  • 김창근;한학용;허강인
    • Proceedings of the Korea Institute of Convergence Signal Processing
    • /
    • 2001.06a
    • /
    • pp.285-288
    • /
    • 2001
  • In this paper, we proposed new method of speech feature extraction using ICA(Independent Component Analysis) which minimized the dependency and correlation among speech signals on purpose to separate each component in the speech signal. ICA removes the repeating of data after finding the axis direction which has the greatest variance in input dimension. We verified improvement of speech recognition ability with training and recognition experiments when ICA compared with conventional mel-cepstrum features using HMM. Also, we can see that ICA dealt with the situation of recognition ability decline that is caused by environmental noise.

  • PDF

Blind Classification of Speech Compression Methods using Structural Analysis of Bitstreams (비트스트림의 구조 분석을 이용한 음성 부호화 방식 추정 기법)

  • Yoo, Hoon;Park, Cheol-Sun;Park, Young-Mi;Kim, Jong-Ho
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.16 no.1
    • /
    • pp.59-64
    • /
    • 2012
  • This paper addresses a blind estimation and classification algorithm of the speech compression methods by using analysis on the structure of compressed bitstreams. Various speech compression methods including vocoders are developed in order to transmit or store the speech signals at very low bitrates. As a key feature, the vocoders contain the block structure inevitably. In classification of each compression method, we use the Measure of Inter-Block Correlation (MIBC) to check whether the bitstream includes the block structure or not, and to estimate the block length. Moreover, for the compression methods with the same block length, the proposed algorithm estimates the corresponding compression method correctly by using that each compression method has different correlation characteristics in each bit location. Experimental results indicate that the proposed algorithm classifies the speech compression methods robustly for various types and lengths of speech signals in noisy environment.