• Title/Summary/Keyword: correction parameter

Search Result 299, Processing Time 0.021 seconds

Location Correction Based on Map Information for Indoor Positioning Systems (지도 정보를 반영한 옥내 측위 보정 방안)

  • Yim, Jae-Geol;Shim, Kyu-Bark;Park, Chan-Sik;Jeong, Seung-Hwan
    • Journal of Korea Multimedia Society
    • /
    • v.12 no.2
    • /
    • pp.300-312
    • /
    • 2009
  • An indoor location-based service cannot be realized unless the indoor positioning problem is solved. However, the cost-effective indoor positioning systems are suffering from their inaccurateness. This paper proposes a map information-based correction method for the indoor positioning systems. Using our Kalman filter with map information-based appropriate parameter values, our method estimates the track of the moving object, then it performs the Frechet Distance-based map matching on the obtained track. After that it applies our real time correction method. In order to verify efficiency of our method, we also provide our test results.

  • PDF

A study of correction dependent on process parameters for printing on a three-dimensional surface (3차원 곡면에 정밀 인쇄를 위한 공정 변수에 따른 이미지 보정에 관한 연구)

  • Song Min Sup;Kim Hyo Chan;Lee Sang Ho;Yang Dong Yol
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.23 no.2 s.179
    • /
    • pp.181-190
    • /
    • 2006
  • In the industry, three-dimensional coloring has been needed for a realistic prototype. The Z-corporation developed a 3D printer which provides a three-dimensional colored prototype. However, the process cannot be adopted to models fabricated by other rapid prototyping processes. In addition, time and cost for manufacturing colored prototypes still remain to be improved. In this study, a new coloring process using an ink-jet head is proposed for color printing on a three-dimensional surface. Process parameters such as the angle and the distance between the ink-jet nozzle and the three-dimensional surface should be investigated through experiments. In order to minimize the distortion of a 2D image, the correction matrix according to the sloped angle is proposed and obtained by analysis of printing errors. An image on the doubly curved surface is printed so as to verify the proposed method. As a practical example, a helmet is chosen for printing images on the curved surface. The practical applicability of the correction matrix is then demonstrated by printing the character images on the surface of the helmet.

Study on the Springback Reduction of Automotive Advanced High Strength Steel Panel (자동차 초고강도 강판 패널의 스프링백 저감에 관한 연구)

  • Kim, B.G.;Lee, I.S.;Keum, Y.T.
    • Transactions of Materials Processing
    • /
    • v.18 no.6
    • /
    • pp.488-493
    • /
    • 2009
  • The very big springback of advanced high strength steel(AHSS) sheets invokes undesired shape defects, which can be generally eliminated by die correction or process parameter control. The springback reduction by controlling the forming process parameters is easy for the application, but limited for the bulky achievement. In this study, the effective die correction method, which obtains the modification of tool shape from the relationship between die design variable and springback, is introduced and is applied to the TWB tool of automotive side rail to show the validity and usefulness. Among the die correction trials repeatedly performed, the first trial is carried out by correcting the tool shape to the opposite direction to the springbacks of several tool sections. Next trials are done by extrapolating the springbacks of among the original tool uncorrected and the tools corrected negative amounts of the springback and by finding tool shapes without springbacks. After the angle of side wall and radius of curvature of horizontal bottom floor are chosen as design variables in the tool design of side rail, the tool shape is corrected 3 times. The accuracy of final shape within the assembly limit of 1mm and the springback reduction of 75.8% compared to the uncorrected tool are achieved.

DETERMINATION OF GPS HEIGHT WITH INCORPORATION OF USING SURFACE METEOROLOGICAL MEASUREMENTS

  • Wang, Chuan-Sheng;Liou, Yuei-An;Yeh, Ta-Kang
    • Proceedings of the KSRS Conference
    • /
    • 2008.10a
    • /
    • pp.313-316
    • /
    • 2008
  • Although the positioning accuracy of the Global Positioning System (GPS) has been studied extensively and used widely, it is still limited due to errors from sources such as the ionospheric effect, orbital uncertainty, antenna phase center variation, signal multipath and tropospheric influence. This investigation addresses the tropospheric effect on GPS height determination. Data obtained from GPS receivers and co-located surface meteorological instruments in 2003 are adopted in this study. The Ministry of the Interior (MOl), Taiwan, established these GPS receivers as continuous operating reference stations. Two different approaches, parameter estimation and external correction, are utilized to correct the zenith tropospheric delay (ZTD) by applying the surface meteorological measurements (SMM) data. Yet, incorrect pressure measurement leads to very poor accuracy. The GPS height can be affected by a few meters, and the root-mean-square (rms) of the daily solution ranges from a few millimeters to centimeters, no matter what the approach adopted. The effect is least obvious when using SMM data for the parameter estimation approach, but the constant corrections of the GPS height occur more often at higher altitudes. As for the external correction approach, the Saastamoinen model with SMM data makes the repeatability of the GPS height maintained at few centimeters, while the rms of the daily solution displays an improvement of about 2-3 mm.

  • PDF

Integrated Modeling for the Design of Deformable Mirrors Using a Parametric Module Method

  • Zhu, Junqing;Sha, Wei;Chen, Changzheng;Zhang, Xingxiang;Ren, Jianyue
    • Journal of the Optical Society of Korea
    • /
    • v.19 no.5
    • /
    • pp.521-530
    • /
    • 2015
  • Active optics is a key technology for future large-aperture space telescopes. In the design of deformable mirrors for space applications, the design parameter trade-off between the number of regularly configured actuators and the correction capability is essential but rarely analyzed, due to the lack of design legacy. This paper presents a parametric module method for integrated modeling of deformable mirrors with regularly configured actuators. A full design parameter space is explored to evaluate the correction capability and the mass of deformable mirrors, using an autoconstructed finite-element parametric modeling method that utilizes manual finite-element meshing for complex structures. These results are used to provide design guidelines for deformable mirrors. The integrated modeling method presented here can be used for future applied optics projects.

Shear Strength of Fine Sand -Curvature Characteristics of Failure Envelope and Stress Parameter- (가는 모래의 전단강도 -파괴포락선의 곡률특성과 상태정수에 관하여-)

  • Yoon, Yeo Won
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.14 no.1
    • /
    • pp.195-202
    • /
    • 1994
  • In this research, a lot of triaxial test results (CID) are analyzed to study the curvature characteristics of failure envelope of sand and parametric relationship between shear strength and state parameter by Been and Jefferies. In the conventional triaxial tests, correction for the change of sectional area of a sample and for membrane influence is essential especially in order to determine critical state (or steady state) condition more correctly. Based on the test results, a model to express the shear strength of fine sand as a function of density and stress level is presented and curvature characteristics of shear failure envelope and parametric relationship between state parameter and shear strength parameters are evaluated.

  • PDF

Structural Change and Stability in a Long-Run Parameter (장기모수의 구조변화와 안정성)

  • Kim, Tae-Ho
    • Communications for Statistical Applications and Methods
    • /
    • v.18 no.4
    • /
    • pp.495-505
    • /
    • 2011
  • This study performs statistical tests for stability of a long-run relationship in the telecommunication market system by identifying the time path of a recursively estimated cointegration parameter. A dummy variable is used to recover stability for the period that the hypothesis of stable cointegration is rejected, and then a proper cointegrating relation is derived. A dummy variable appears to reflect the structural change in the cointegrating relation according to the analytical results for the error correction term.

A nonlocal strain gradient refined plate model for thermal vibration analysis of embedded graphene sheets via DQM

  • Ebrahimi, Farzad;Barati, Mohammad Reza
    • Structural Engineering and Mechanics
    • /
    • v.66 no.6
    • /
    • pp.693-701
    • /
    • 2018
  • This paper develops a nonlocal strain gradient plate model for vibration analysis of graphene sheets under thermal environments. For more accurate analysis of graphene sheets, the proposed theory contains two scale parameters related to the nonlocal and strain gradient effects. Graphene sheet is modeled via a two-variable shear deformation plate theory needless of shear correction factors. Governing equations of a nonlocal strain gradient graphene sheet on elastic substrate are derived via Hamilton's principle. Differential quadrature method (DQM) is implemented to solve the governing equations for different boundary conditions. Effects of different factors such as temperature rise, nonlocal parameter, length scale parameter, elastic foundation and aspect ratio on vibration characteristics a graphene sheets are studied. It is seen that vibration frequencies and critical buckling temperatures become larger and smaller with increase of strain gradient and nonlocal parameter, respectively.

A Protective Effectiveness Measure for Distribution Systems (배전계통 보호시스템의 보호능력의 평가방법)

  • 현승호;이승재;임성일;최인선;신재항;최면송
    • The Transactions of the Korean Institute of Electrical Engineers A
    • /
    • v.53 no.5
    • /
    • pp.249-256
    • /
    • 2004
  • This paper suggests a novel evaluation scheme of protective effectiveness in distribution systems. The adequacy of every parameter in a protective device is evaluated for the setting or correction rules. Then, the protective effectiveness of a device, device-wise effectiveness, is obtained by the combination of the parametric evaluation results. The coordination-wise effectiveness between devices can be calculated by evaluating the parameters which contribute the performance of coordination. The protective effectiveness of the whole system can be obtained by combining the device-wise and coordination-wise effectiveness values. The rules, in this paper, are categorized into three groups; rules for single parameter, rules for coordination between parameters, and rules for coordination between protective devices to form a hierarchical calculation model. The proposed method is applied to a typical distribution network to show its effectiveness.

Sensitivity Analysis for CAS500-4 Atmospheric Correction Using Simulated Images and Suggestion of the Use of Geostationary Satellite-based Atmospheric Parameters (모의영상을 이용한 농림위성 대기보정의 주요 파라미터 민감도 분석 및 타위성 산출물 활용 가능성 제시)

  • Kang, Yoojin;Cho, Dongjin;Han, Daehyeon;Im, Jungho;Lim, Joongbin;Oh, Kum-hui;Kwon, Eonhye
    • Korean Journal of Remote Sensing
    • /
    • v.37 no.5_1
    • /
    • pp.1029-1042
    • /
    • 2021
  • As part of the next-generation Compact Advanced Satellite 500 (CAS500) project, CAS500-4 is scheduled to be launched in 2025 focusing on the remote sensing of agriculture and forestry. To obtain quantitative information on vegetation from satellite images, it is necessary to acquire surface reflectance through atmospheric correction. Thus, it is essential to develop an atmospheric correction method suitable for CAS500-4. Since the absorption and scattering characteristics in the atmosphere vary depending on the wavelength, it is needed to analyze the sensitivity of atmospheric correction parameters such as aerosol optical depth (AOD) and water vapor (WV) considering the wavelengths of CAS500-4. In addition, as CAS500-4 has only five channels (blue, green, red, red edge, and near-infrared), making it difficult to directly calculate key parameters for atmospheric correction, external parameter data should be used. Therefore, thisstudy performed a sensitivity analysis of the key parameters (AOD, WV, and O3) using the simulated images based on Sentinel-2 satellite data, which has similar wavelength specifications to CAS500-4, and examined the possibility of using the products of GEO-KOMPSAT-2A (GK2A) as atmospheric parameters. The sensitivity analysisshowed that AOD wasthe most important parameter with greater sensitivity in visible channels than in the near-infrared region. In particular, since AOD change of 20% causes about a 100% error rate in the blue channel surface reflectance in forests, a highly reliable AOD is needed to obtain accurate surface reflectance. The atmospherically corrected surface reflectance based on the GK2A AOD and WV was compared with the Sentinel-2 L2A reflectance data through the separability index of the known land cover pixels. The result showed that two corrected surface reflectance had similar Seperability index (SI) values, the atmospheric corrected surface reflectance based on the GK2A AOD showed higher SI than the Sentinel-2 L2A reflectance data in short-wavelength channels. Thus, it is judged that the parameters provided by GK2A can be fully utilized for atmospheric correction of the CAS500-4. The research findings will provide a basis for atmospheric correction of the CAS500-4 in the future.