Browse > Article
http://dx.doi.org/10.3807/JOSK.2015.19.5.521

Integrated Modeling for the Design of Deformable Mirrors Using a Parametric Module Method  

Zhu, Junqing (Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences)
Sha, Wei (Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences)
Chen, Changzheng (Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences)
Zhang, Xingxiang (Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences)
Ren, Jianyue (Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences)
Publication Information
Journal of the Optical Society of Korea / v.19, no.5, 2015 , pp. 521-530 More about this Journal
Abstract
Active optics is a key technology for future large-aperture space telescopes. In the design of deformable mirrors for space applications, the design parameter trade-off between the number of regularly configured actuators and the correction capability is essential but rarely analyzed, due to the lack of design legacy. This paper presents a parametric module method for integrated modeling of deformable mirrors with regularly configured actuators. A full design parameter space is explored to evaluate the correction capability and the mass of deformable mirrors, using an autoconstructed finite-element parametric modeling method that utilizes manual finite-element meshing for complex structures. These results are used to provide design guidelines for deformable mirrors. The integrated modeling method presented here can be used for future applied optics projects.
Keywords
Active optics; Space telescope; Deformable mirrors; Integrated modeling; Wavefront compensation;
Citations & Related Records
연도 인용수 순위
  • Reference
1 L. Feinberg, L. Cohen, B. Dean, W. Hayden, J. Howard, and R. Keski-Kuha, "Space telescope design considerations," Opt. Eng. 51, 011006 (2012).   DOI
2 S. E. Forman, "Advanced Land Imager: mechanical design, integration, and testing," Lincoln Laboratory Journal 15, 181-196 (2005).
3 H. P. Stahl, M. Postman, and W. S. Smith, "Engineering specification for large-aperture UVO space telescopes derived from science requirements," Proc. SPIE 8860, 886006 (2013).
4 M. D. Lallo, "Experience with the Hubble Space Telescope: 20 years of an archetype," Opt. Eng. 51, 011011 (2012).   DOI
5 P. Schipani, S. D'Orsi, L. Ferragina, D. Fierro, L. Marty, C. Molfese, and F. Perrotta, "Active optics primary mirror support system for the 2.6 m VST telescope," Appl. Opt. 49, 1234-1241 (2010).   DOI
6 L. D. Feinberg, M. Clampin, R. Keski-Kuha, C. Atkinson, S. Texter, M. Bergeland, and B. B. Gallagher, "James Webb Space Telescope optical telescope element mirror development history and results," Proc. SPIE 8442, 84422B (2012).
7 J. J. M. Oschmann, G. Hickey, T. Barbee, M. Ealey, D. Redding, M. C. Clampin, and H. A. MacEwen, "Actuated hybrid mirrors for space telescopes," Proc. SPIE 7731, 773120 (2010).
8 M. Postman, W. B. Sparks, F. Liu, K. Ess, J. Green, K. G. Carpenter, H. Thronson, and R. Goullioud, "Using the ISS as a testbed to prepare for the next generation of space-based telescopes," Proc. SPIE 8442, 84421T (2012).
9 M. Laslandes, E. Hugot, M. Ferrari, C. Hourtoule, C. Singer, C. Devilliers, C. Lopez, and F. Chazallet, "Mirror actively deformed and regulated for applications in space: design and performance," Opt. Eng. 52, 091803 (2013).   DOI
10 Z. Challita, T. Agocs, E. Hugot, A. Jasko, G. Kroes, W. Taylor, C. Miller, H. Schnetler, L. Venema, L. Mosoni, D. Le Mignant, M. Ferrari, J.-G. Cuby, "Design and development of a freeform active mirror for an astronomy application," Opt. Eng. 53, 031311 (2014).   DOI   ScienceOn
11 S. Ravensbergen, R. Hamelinck, P. Rosielle, and M. Steinbuch, "Deformable mirrors: design fundamentals for force actuation of continuous facesheets," Proc. SPIE 7466, 74660G (2009).
12 M. W. Smith and D. W. Miller, "Minimizing actuator-induced errors in active space telescope mirrors," Proc. SPIE 7731, 773122 (2010).
13 L. E. Cohan. "Integrated modeling and design of lightweight, active mirrors for launch survival and on-orbit performance," Ph.D. Thesis, Massachusetts Institute of Technology (2010).
14 L. E. Cohan, "Integrated modeling for design of lightweight, active mirrors," Opt. Eng. 50, 063003 (2011).   DOI   ScienceOn
15 W. R. Arnold, R. M. Bevan, and H. P. Stahl, "Integration of mirror design with suspension system using NASA's new mirror modeling software," Proc. SPIE 8836, 88360J (2013).
16 S. A. Mitchell, M. A. Mohammed, A. H. Mahmoud, and M. S. Ebeida, "Delaunay quadrangulation by two-coloring vertices," Procedia Engineering 82, 364-376 (2014).   DOI   ScienceOn
17 S. A. Uebelhart, "Non-deterministic design and analysis of parameterized optical structures during conceptual design," Ph.D. Thesis, Massachusetts Institute of Technology (2006).