• Title/Summary/Keyword: core sediments

Search Result 219, Processing Time 0.025 seconds

Provenance of the Sediments of the Araon Mound in the Chukchi Sea, Arctic Ocean (북극 척치해 아라온 마운드 퇴적물의 기원지에 관한 연구)

  • Jang, JeongKyu;Koo, HyoJin;Cho, HyenGoo
    • Korean Journal of Mineralogy and Petrology
    • /
    • v.34 no.1
    • /
    • pp.15-29
    • /
    • 2021
  • In the Arctic Ocean, the distribution of sea ice and ice sheets changes as climate changes. Because the distribution of ice cover influences the mineral composition of marine sediments, studying marine sediments transported by sea ice or iceberg is very important to understand the global climate change. This study analyzes marine sediment samples collected from the Arctic Ocean and infers the provenance of the sediments to reconstruct the paleoenvironment changes of the western Arctic. The analyzed samples include four gravity cores collected from the Araon mound in the Chukchi Plateau and one gravity core collected from the slope between the Araon mounds. The core sediments were brown, gray, and greenish gray, each of which corresponds to the characteristic color of sediments deposited during the interglacial/glacial cycle in the western Arctic Ocean. We divide the core sediments into three units based on the analysis of bulk mineral composition, clay mineral composition, and Ice Rafted Debris (IRD) as well as comparison with previous study results. Unit 3 sediments, deposited during the last glacial maximum, were transported by sea ice and currents after the sediments of the Kolyma and Indigirka Rivers were deposited on the continental shelf of the East Siberian Sea. Unit 2 sediments, deposited during the deglacial period, were from the Kolyma and Indigirka Rivers flowing into the East Siberian Sea as well as from the Mackenzie River and the Canadian Archipelago flowing into the Beaufort Sea. Unit 2 sediments also contained an extensive amount of IRD, which originated from the melted Laurentide Ice Sheet. During the interglacial stage, fine-grained sediments of Unit 1 were transported by sea ice and currents from Northern Canada and the East Siberian Sea, but coarse-grained sediments were derived by sea ice from the Canadian Archipelago.

Trace Organic Contaminants in Sediments from Deep-sea Basin near Dokdo, Korea

  • Yim, Un-Hyuk;Oh, Jae-Ryoung;Hong, Sang-Hee;Li, Dong-Hao;Shim, Won-Joon;Choi, Hye-Kyung;Kim, Eun-Soo;Shim, Jae-Hyung
    • Ocean and Polar Research
    • /
    • v.24 no.4
    • /
    • pp.391-398
    • /
    • 2002
  • Trace organic contaminants in deep-sea sediments near Dokdo were analyzed. Total PAMs concentration ranged 14.8-314 ng/g dry weight and high molecular weight PAHs were dominant. The highest PAHs concentration was detected at A19 which located at Ulleung Basin. Most of organochlorines were under detection limit. Among the detected organochlorines, DDT compounds were dominant and followed by HCHs and HCB. Butyltin compounds and most of organophosphorus pesticides were not detected. Vertical distribution of PAHs showed typical sub-surface maximum and decreasing trends depending on depth. The highest PAHs concentration reached 454ng/g. Some organochlorines, DDT, HCH was detected and also showed decreasing trends. Other target organic pollutants were not detected in core sediments. Abnormally high level of PAHs concentration in A19 was discussed and the input sources were inferred to be the transport of sludge derived pollutant dumped at dumping site 'Byung' by deep current.

Polycyclic Aromatic Hydrocarbons in Sediments of the Yellow Sea

  • Yang, Dong-Beom;Yu, Jun;Lee, Ki-Bok;Kim, Kyung-Tae;Chung, Chang-Soo;Hong, Gi-Hoon
    • Ocean and Polar Research
    • /
    • v.21 no.2
    • /
    • pp.149-157
    • /
    • 1999
  • Surface sediment samples collected from the eastern half of the Yellow Sea proper in 1998 were analyzed for polycyclic aromatic hydrocarbons (PAHs), ubiquitous pollutants. Total PAHs concentrations varied from 1.0 to $320.5ng\;g^{-1}$ dw. Relatively high concentrations of PAHs were found in the muddy central part of the Yellow Sea. Sedimentary total PAHs concentrations in the Yellow Sea proper were similar to those of Californian offshores and the central Mediterranean Sea, albeit an order of magnitude lower than the Yellow Sea nearshore areas. Phenanthene/Anthracene concentration ratio of PAHs in bottom sediments suggested that pyrolytic PAHs might be dominant over petrogenic ones in the eastern Yellow Sea. Downcore depth distributions of PAHs from the relatively undisturbed core samples of the central Yellow Sea showed decreasing PAHs concentrations with core depths and suggested that the Yellow Sea has been increasingly exposed to PAH for decades. Annual total PAH flux to these sediments was estimated to be $166{\mu}gm^{-2}yr^{-1}$ in the central part of the Yellow Sea for the recent decade.

  • PDF

Distribution and Pollution Assessment of Trace Metals in Core Sediments from the Artificial Lake Shihwa, Korea (시화호 코어 퇴적물 내 미량금속 분포 특성 및 오염 평가)

  • Ra, Kongtae;Kim, Eun-Soo;Kim, Joung-Keun;Kim, Kyung-Tae;Lee, Jung-Moo;Kim, Eu-Yeol
    • Ocean and Polar Research
    • /
    • v.35 no.2
    • /
    • pp.69-83
    • /
    • 2013
  • Metal concentrations in creek water, sewer outlets and core sediments were analyzed to identify the potential origin of metal pollution and to evaluate the extent of metal pollution and potential toxicity of Lake Shihwa. Mean concentrations for dissolved metals in creek water and sewer outlets were 1.6~136 times higher than those in the surface seawater of Lake Shihwa. Metal concentrations in creek water from an industrial region were also higher than those from municipal and agricultural regions, indicating that the potential source of metal pollution in the study area might be mainly due to industrial activities. The vertical profiles of metals in core sediments showed an increasing trend toward the upper sediments. Extremely higher concentrations of metals were observed in the vicinity of Banweol industrial complex. The results of a geo-accumulation index indicated that Cu, Zn and Cd were highly polluted. By comparing the sediment quality guidelines such as TEL and PEL, six metals such as Cr, Ni, Cu, Zn, Cd and Pb levels in core sediments nearby industrial complex exceeded the PEL value. Mean PEL quotient (mPELQ) was used to integrate the estimate of potential toxicity for measured metals in the present study. Mean PELQs in core sediments from Lake Shihwa ranged from 0.2~2.3, indicating that benthic organisms nearby the industrial complex may have been adversely affected.

Provenance of the ARA07C-St02B Core Sediment from the East Siberian Margin (동시베리아해 연변부 ARA07C-St02B 코어 퇴적물의 기원지 연구)

  • Koo, Hyo Jin;Lim, Gi Taek;Cho, Hyen Goo
    • Korean Journal of Mineralogy and Petrology
    • /
    • v.35 no.1
    • /
    • pp.13-24
    • /
    • 2022
  • The Arctic Ocean is very sensitive to global warming and Arctic Ocean sediments provide a records of terrestrial climate change, analyzing their composition helps clarify global warming. The gravity core sediment ARA07C-St02B was collected at the East Siberian margin during an Arctic expedition in 2016 on the Korean ice-breaking vessel ARAON, and its provenance was estimated through sedimentological, mineralogical and geochemical analysis. The core sediment was divided into four units based on sediment color, sand content and ice-rafted debris content. Units 1 and 3 had higher sand and ice-rafted debris contents than units 2 and 4, and contained a brown layer, whereas units 2 and 4 were mainly composed of a gray layer. Correlation analysis using the adjacent core sediment ARA03B-27 suggested that the sediment units were deposited during marine isotope stage 1 to 4. The bulk mineral, clay mineral, and geochemical compositions of units including a brown layer differed from units including a gray layer. Bulk and clay mineral compositions indicated that coarse and fine sediments had a different origin. Coarse sediments might have been deposited mostly by the East Siberian Coastal Current from the Laptev Sea and the East Siberian Sea or by the Beaufort Gyre from the Chukchi Sea, whereas fine sediments might have been transpoted mostly by currents from the East Siberian Sea, the Chukchi Sea and the Beaufort Sea. Some of the coarse sediments in unit 1 and fine sediments in unit 3 might have been deposited by iceberg ice, sea ice or current from the Beaufort Sea and the Canada Archipelago. Investigating the geochemical composition of the potential origins will elucidate the origin and transportation of the study area's core sediments.

Geochemistry of Shallow gases taken from the core sediments in the southeastern Ulleung Basin (울릉분지 남동부 시추 퇴적물 내에 함유되어 있는 천부가스의 특성)

  • Lee Young joo;Huh Shik;Kwak Young hoon;Kim Hag ju;Chun Jong Hwa;Jun Sang Joon;Yoo Hai Soo
    • The Korean Journal of Petroleum Geology
    • /
    • v.7 no.1_2 s.8
    • /
    • pp.35-40
    • /
    • 1999
  • Chemical and isotopic compositions of hydrocarbon gases were analyBed to characterize the properties of the shallow gases distributed in the southeastern part of the Ulleung Basin, offshore Korea. Sediments from the core were also analyzed to determine the characteristics and relationship to shallow gases. Hydrocarbon gases in the sediments consisted of methane (697.9-6054.4 ppm), ethane, propane, butane and hexane. The total carbon content of the sediments ranges from 1.84fe to $5.11{\%}$ and the total organic carbon content ranges from $0.29{\%} \;to\; 2.65{\%}$. High C/N ratio (>10) indicates that input of terrestrial organic matter was prevalent at the time of deposition. The methane content and stable isotopic data indicate that hydrocarbon gases from the sediments are identified to be thermogenic gas and mixture of both biogenic and thermal gases. Based on the Rock-Eval and carbon isotopic data, the level of thermal maturity of organic matter in the sediments $(Tmax<425^{\circ}C)$ is lower than that of gas. It suggests that thermal gases in the sediments migrated from the deeper sediments than the penetrated depth.

  • PDF

Characteristics of a Turbidite Sediment from the Southern Margin of the Okinawa Trough, Japan (오끼나와해곡 남쪽해역의 저탁류 퇴적물의 특성)

  • 현상민
    • 한국해양학회지
    • /
    • v.30 no.2
    • /
    • pp.69-76
    • /
    • 1995
  • A turbidite core sediment (RN88-PC5) from 2051 m on the deep-sea floor at the southern margin of Okinawa Trough was examined. Sedimentological characteristics were quite different between sandy sediments and hemipelagic sediments and hemipelagic sediments in terms of benthic foraminiferal assemblage, grain-size and chemical composition. All turbidite sandy sediments were clearly transported from shallow area as they include typical coral reef dwelling benthic foraminifera which were not found in the background hemipelagic sediments. These layers also suggest that the sediments were transported by turbidity-related currents and implies that sedimentological mechanisms were different between sandy sediments and hemipelagic sediments. The result of the /SUP 14/ C age dating and the stable oxygen isotopic fluctuation of planktonic foraminifera show a gradual warming trend of the surface water from about 10 Ka to present. Also Termination lb as well as two fresh water input events were recognized at ca2 and 7 ka.

  • PDF

Variation Calcium Carbonate Content in Deep-Sea Pelagic Sediments of the Western Pacific Ocean (서태평양 심해 원양성 퇴적물의 탄산염 함량 변화)

  • Khim, Boo-Keun;Kim, Yeo-Hun;Kim, Hyung-Jeek;Hyeong, Ki-Seong;Yoo, Chan-Min
    • Ocean and Polar Research
    • /
    • v.32 no.1
    • /
    • pp.15-22
    • /
    • 2010
  • Calcium carbonate ($CaCO_3$) content was measured from 3 box core (BC060301, BC060303, BC070301) sediments, in addition to pilot core (PC313) sediments, from deep waters within the Western Pacific Ocean. At the two collection sites (BC060301, PC313) located close to the equator, downcore variation exhibited low $CaCO_3$ content during the interglacial period and high $CaCO_3$ content during the glacial period. Variation of coarse fraction (>$63\;{\mu}m$) content also followed changes in $CaCO_3$ content, indicating that dissolution effect of bottom water decreased during the glacial period. Such variation pattern is typical of the Pacific Ocean. However, downcore variation at the two collection sites (BC060303, BC070301) in the Philippine Sea contrasted the trend of the previous two cores (i.e., high $CaCO_3$ content during the interglacial period and low during the glacial period). This pattern is typical of the Atlantic Ocean. Such results may be attributed to the increasing dilution effect, initiated possibly by the increased transportation of terrigenous materials from nearby continent and archipelago during the glacial period when sea level was low. Alternatively, it is possible that the non-carbonate biogenic particles may have been responsible for dilution. Because of these uncertainties, the record of $CaCO_3$ variation in the deep Western Pacific Ocean is not regionally consistent.

Origin of Clay Minerals of Core RS14-GC2 in the Continental Slope to the East of the Pennell-Iselin Bank in the Ross Sea, Antarctica (남극 로스해 펜넬-이젤린 퇴 동쪽 대륙사면의 코어 RS14-GC2의 점토광물의 기원지 연구)

  • Ha, Sangbeom;Khim, Boo-Keun;Cho, Hyen Goo;Colizza, Ester
    • Journal of the Mineralogical Society of Korea
    • /
    • v.31 no.1
    • /
    • pp.1-12
    • /
    • 2018
  • A gravity core (RS14-C2) was collected at site RS14-C2 in the continental slope to the east of Pennell-Isellin Bank of the Ross Sea (Antarctica) during PNRA XXIX (Rosslope II Project) Expedition. In order to trace the sediment source, magnetic susceptibility (MS), sand fraction, and clay mineral compositions were analyzed, and AMS $^{14}C$ ages were dated. Core sediments consist mostly of hemipelagic sandy clay or silty clay including ice-rafted debris (IRD). AMS $^{14}C$ age of core-top indicates the modern and Holocene sediments. Based on AMS $^{14}C$ dating, sediment color, MS and sand fraction, core sediments are divided into interglacial and glacial intervals. The interglacial brown sediments are characterized by low MS and sand fraction, whereas the glacial gray sediments are characterized by high MS and sand fraction. Among clay mineral compositions of core sediments, illite is highest (61.8~76.7%), and chlorite (15.7~21.3%), kaolinite (3.6~15.4%), and smectite (0.9~5.1%) are in decreasing order, and these compositions are also divided into the interglacial and glacial/deglacial intervals. During the glacial period, the high content of illite and chlorite indicate sediment supply from the bedrocks of Transantarctic Mountains under the Ross Ice Sheet. In contrast, because of decreasing supply of illite and chlorite by the glacial retreat, smectite and kaolinite contents increased relatively during the interglacial period. During the interglacial period, smectite may be transported additionally by the northeastward flowing surface current from the coast of Victoria Land in the western Ross Sea. Kaolinite may be also supplied to the continental slope by the Antarctic Slope Current from the kaolin-rich metasedimentary rock outcropped on the Edward VII Peninsula.