• Title/Summary/Keyword: core generator

Search Result 213, Processing Time 0.037 seconds

The Comparison of Output Characteristic by the Electro-magnetic Structure Modification of the Axial Flux Type Permanent Magnet Synchronous Generator (종축 자속형 영구자석 동기 발전기의 전자기적 구조 변경에 따른 출력특성 비교)

  • Jung, Tae-Uk;Bae, Byung-Duk;Kim, Hoe-Cheon
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.25 no.6
    • /
    • pp.42-48
    • /
    • 2011
  • Generally, the structure without the stator core Axial Field Permanent Magnet (AFPM) generator was simple and there was nearly no cogging toque. And because it had the wide driving rate area, it had been being mainly used in the small wind power generation system. However, AFPM generator with non-slotted stator can't generate high voltage at low wind speed due to long air-gap. It is the reason of output efficiency drop. Therefore, in this paper, the AFPM synchronous generator with internal rotor and dual slotted stators for the small wind turbine is studied, and deal with a cogging torque minimization through the determination of optimum pole-arc ratio.

Performance Evaluation of Small-Scaled Wind Power Generator with Outer Permanent Magnet Rotor considering Electromagnetic Losses (2) - Electromagnetic Losses and Performance Analysis - (전자기 손실을 고려한 소형 외전형 영구자석 풍력발전기의 성능 평가 (2) - 전자기 손실 해석 및 성능 평가 -)

  • Ko, Kyoung-Jin;Jang, Seok-Myeong;Choi, Jang-Young
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.60 no.1
    • /
    • pp.50-62
    • /
    • 2011
  • In this paper, analytical techniques for performance characteristics analysis of wind power generator with outer permanent magnet rotor are proposed. Furthermore, the proposed analytical techniques are validated by performance experiments of the manufactured generator. In this part, characteristic equations of losses such as copper loss, core loss are derived. Using the derived loss characteristic equations, electrical parameters obtained in [15] and d-q axes method, constant load and constant speed characteristics of wind power generator are analyzed. And then, to analyze performance of wind power system according to wind speed, d-q analysis model considering wind turbine characteristics is proposed. Finally, the obtained performance characteristics results are validated in comparison with those by experiments.

A Study on the Power Plant Application of Engine Condition Diagnosis Technology for Diesel Generator (디젤발전기 엔진 상태 진단 기술의 발전소 적용 연구)

  • Choi, Kwang-Hee;Lee, Sang-Guk
    • Journal of Power System Engineering
    • /
    • v.17 no.4
    • /
    • pp.17-22
    • /
    • 2013
  • Diesel generator of nuclear power plant has a role for supply of emergency electric power to protect reactor core system in event of loss of off-site power supply. Therefore diesel generator should be tested periodically to verify the function that can supply specified frequency and voltage at design power level within limited time. For this purpose, appropriate maintenances in case that abnormal conditions were found are required in allowed time. In this paper, results of development of engine condition diagnosis technology and study on power plant of its technology for diesel generator are described.

Separate and integral effect tests of aerosol retention in steam generator during tube rupture accident

  • Lee, Byeonghee;Kim, Sung-Il;Ha, Kwang Soon
    • Nuclear Engineering and Technology
    • /
    • v.54 no.7
    • /
    • pp.2702-2713
    • /
    • 2022
  • A steam generator tube rupture accompanying a core damage may cause the fission product to be released to environment bypassing the containment. In such an accident, the steam generator is the major path of the radioactive aerosol release. AEOLUS facility, the scaled-down model of Korean type steam generator, was built to examine the aerosol removal in the steam generator during the steam generator tube rupture accident. Integral and separate effect tests were performed with the facility for the dry and flooded conditions, and the decontamination factors were presented for different tube configurations and submergences. The dry test results were compared with the existing test results and with the analyses to investigate the aerosol retention physics by the tube bundle, with respect to the particle size and the bundle geometry. In the flooded tests, the effect of submergence were shown and the retention in the jet injection region were presented with respect to the Stokes number. The test results are planned to be used to constitute the aerosol retention model, specifically applicable for the analysis of the steam generator tube rupture accident in Korean nuclear power plants to evaluate realistic fission product behavior.

Dynamic Characteristic Analysis of Water-Turbine Generator Control System of Sihwa Tidal Power Plant (시화조력발전소 수차발전기 제어시스템의 동적 특성 해석)

  • Ahn, Sang-Ji;Ban, Yu-Hyeon;Park, Chul-Won
    • The Transactions of the Korean Institute of Electrical Engineers P
    • /
    • v.61 no.4
    • /
    • pp.180-185
    • /
    • 2012
  • Tidal power is one of new and renewable energy sources. The seawater is stored inside a tidal embankment built at the mouth of a river or bay, where tides ebb and flow. The water turbine-generators produce power by exploiting the gap in the water level between the water outside and inside the embankment. Tidal power plant is a large plant that is installed on the sea. And then, the facility's operations and a separate control system for monitoring and maintenance is required. However, this plant predictive control of building systems and technologies have been avoided the transfer of technology from advanced global companies. Accordingly, the control system for core technology development and localization is urgently needed. This paper presents modeling and simulation using by PSS/E about generator, governor, exciter, and power system stabilizer for control system in Sihwa tidal power plant to improve the efficiency and develope of core technology. And the dynamic characteristics of governor and exciter were analyzed.

Maintaining the close-to-critical state of thorium fuel core of hybrid reactor operated under control by D-T fusion neutron flux

  • Bedenko, Sergey V.;Arzhannikov, Andrey V.;Lutsik, Igor O.;Prikhodko, Vadim V.;Shmakov, Vladimir M.;Modestov, Dmitry G.;Karengin, Alexander G.;Shamanin, Igor V.
    • Nuclear Engineering and Technology
    • /
    • v.53 no.6
    • /
    • pp.1736-1746
    • /
    • 2021
  • The results of full-scale numerical experiments of a hybrid thorium-containing fuel cell facility operating in a close-to-critical state due to a controlled source of fusion neutrons are discussed in this work. The facility under study was a complex consisting of two blocks. The first block was based on the concept of a high-temperature gas-cooled thorium reactor core. The second block was an axially symmetrical extended plasma generator of additional neutrons that was placed in the near-axial zone of the facility blanket. The calculated models of the blanket and the plasma generator of D-T neutrons created within the work allowed for research of the neutronic parameters of the facility in stationary and pulse-periodic operation modes. This research will make it possible to construct a safe facility and investigate the properties of thorium fuel, which can be continuously used in the epithermal spectrum of the considered hybrid fusion-fission reactor.

Designs of 10 MW Air-core and Iron-core HTS Wind Power Generators

  • Sung, Hae-Jin;Park, Minwon;Yu, In-Keun
    • Journal of Electrical Engineering and Technology
    • /
    • v.10 no.2
    • /
    • pp.545-550
    • /
    • 2015
  • High Temperature Superconducting (HTS) synchronous generators can be designed with either an air-core type or iron-core type. The air-core type has higher efficiency under rated rotating speed and load than the iron-core type because of the iron losses which may produce much heat. However, the total length of HTS wire in the air-core type is longer than the iron-core type because the generated magnetic flux density of the air-core type is low. This paper deals with designs of 10 MW air-core and iron-core HTS wind power generators for wind turbines. Fully air-core, partially iron-core, and fully iron-core HTS generators are designed, and various stator winding methods in the three HTS generators are also considered, such as short-pitch concentrated winding, full-pitch concentrated winding, short-pitch distributed winding, and full-pitch distributed winding. These HTS generators are analyzed using a 3D finite elements method program. The analysis results of the HTS generators are discussed in detail, and the results will be effectively utilized for large-scale wind power generation systems.

A single-memory based FFT/IFFT core generator for OFDM modulation/demodulation (OFDM 변복조를 위한 단일 메모리 구조의 FFT/IFFT 코어 생성기)

  • Yeem, Chang-Wan;Jeon, Heung-Woo;Shin, Kyung-Wook
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2009.05a
    • /
    • pp.253-256
    • /
    • 2009
  • This paper describes a core generator (FFT_Core_Gen) which generates Verilog HDL models of 8 different FFT/IFFT cores with $N=64{\times}2^k$($0{\leq}k{\leq}7$ for OFDM-based communication systems. The generated FFT/IFFT cores are based on in-place single memory architecture, and use a hybrid structure of radix-4 and radix-2 DIF algorithm to accommodate various FFT lengths. To achieve both memory reduction and the improved SQNR, a conditional scaling technique is adopted, which conditionally scales the intermediate results of each computational stage, and the internal data and twiddle factor has 14 bits. The generated FFT/IFFT cores have the SQNR of 58-dB for N=8,192 and 63-dB for N=64. The cores synthesized with a $0.35-{\mu}m$ CMOS standard cell library can operate with 75-MHz@3.3-V, and a 8,192-point FFT can be computed in $762.7-{\mu}s$, thus the cores satisfy the specifications of wireless LAN, DMB, and DVB systems.

  • PDF

CFD ANALYSIS FOR THERMAL MIXING CHARACTERISTICS OF A FLOW MIXING HEADER ASSEMBLY OF SMART (SMART 유동혼합헤더집합체 열혼합 특성 해석)

  • Kim, Y.I.;Bae, Y.M.;Chung, Y.J.;Kim, K.K.
    • Journal of computational fluids engineering
    • /
    • v.20 no.1
    • /
    • pp.84-91
    • /
    • 2015
  • SMART adopts, very unique facility, an FMHA to enhance the thermal and flow mixing capability in abnormal conditions of some steam generators or reactor coolant pumps. The FMHA is important for enhancing thermal mixing of the core inlet flow during a transient and even during accidents, and thus it is essential that the thermal mixing characteristics of flow of the FMHA be understood. Investigations for the mixing characteristics of the FMHA had been performed by using experimental and CFD methods in KAERI. In this study, the temperature distribution at the core inlet region is investigated for several abnormal conditions of steam generators using the commercial code, FLUENT 12. Simulations are carried out with two kinds of FMHA shapes, different mesh resolutions, turbulence models, and steam generator conditions. The CFD results show that the temperature deviation at the core inlet reduces greatly for all turbulence models and steam generator conditions tested here, and the effect of mesh refinement on the temperature distribution at the core inlet is negligible. Even though the uniformity of FMHA outlet hole flow increases the thermal mixing, the temperature deviation at the core inlet is within an acceptable range. We numerically confirmed that the FMHA applied in SMART has an excellent mixing capability and all simulation cases tested here satisfies the design requirement for FMHA thermal mixing capability.

Study on Cogging Torque Reduction for Small Wind Turbine AFPM Generator of Double Stator Structure (이중 고정자 구조의 소형풍력터빈용 AFPM 발전기의 코깅토크 저감에 관한 연구)

  • Jung, Tae-Uk;Bae, Byung-Duk
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.26 no.2
    • /
    • pp.71-77
    • /
    • 2012
  • The cogging torque is important to the cut-in wind speed. And, it causes the acoustic noise and the vibration on the machine. This paper presents a 3D FEA(Finite Element Analysis) to evaluate the effect of magnet skew and stator displacement on cogging torque reduction, for double core AFPM(Axial Flux Permanent Magnet) generator. As a result, the magnet skew and the stator side displacement are proved excellent techniques to reduce the cogging torque.