Browse > Article
http://dx.doi.org/10.1016/j.net.2020.11.026

Maintaining the close-to-critical state of thorium fuel core of hybrid reactor operated under control by D-T fusion neutron flux  

Bedenko, Sergey V. (National Research Tomsk Polytechnic University)
Arzhannikov, Andrey V. (Budker Institute of Nuclear Physics of Siberian Branch Russian Academy of Sciences)
Lutsik, Igor O. (National Research Tomsk Polytechnic University)
Prikhodko, Vadim V. (Budker Institute of Nuclear Physics of Siberian Branch Russian Academy of Sciences)
Shmakov, Vladimir M. (Federal State Unitary Enterprise (Russian Federal Nuclear Center - Zababakhin All-Russia Research Institute of Technical Physics))
Modestov, Dmitry G. (Federal State Unitary Enterprise (Russian Federal Nuclear Center - Zababakhin All-Russia Research Institute of Technical Physics))
Karengin, Alexander G. (National Research Tomsk Polytechnic University)
Shamanin, Igor V. (National Research Tomsk Polytechnic University)
Publication Information
Nuclear Engineering and Technology / v.53, no.6, 2021 , pp. 1736-1746 More about this Journal
Abstract
The results of full-scale numerical experiments of a hybrid thorium-containing fuel cell facility operating in a close-to-critical state due to a controlled source of fusion neutrons are discussed in this work. The facility under study was a complex consisting of two blocks. The first block was based on the concept of a high-temperature gas-cooled thorium reactor core. The second block was an axially symmetrical extended plasma generator of additional neutrons that was placed in the near-axial zone of the facility blanket. The calculated models of the blanket and the plasma generator of D-T neutrons created within the work allowed for research of the neutronic parameters of the facility in stationary and pulse-periodic operation modes. This research will make it possible to construct a safe facility and investigate the properties of thorium fuel, which can be continuously used in the epithermal spectrum of the considered hybrid fusion-fission reactor.
Keywords
Wave${\gg}$ fissions; Plasma pulse-periodic generator; D-T neutrons; Hybrid fusion-fission reactor; Thorium-containing fuel;
Citations & Related Records
연도 인용수 순위
  • Reference
1 I.V. Shamanin, S.V. Bedenko, Y.B. Chertkov, I.M. Gubaydulin, Gas-cooled thorium reactor with fuel block of the Unified design, Izvestiya Wysshikh Uchebnykh Zawedeniy 3 (2015) 124-134, https://doi.org/10.26583/npe.2015.3.13. Yadernaya Energetika.   DOI
2 G. Locatelli, C. Bingham, M. Mancini, Small modular reactors: a comprehensive overview of their economics and strategic aspects, Prog. Nucl. Energy 73 (2014) 75-85, https://doi.org/10.1016/j.pnucene.2014.01.010.   DOI
3 A.V. Arzhannikov, I.V. Shamanin, S.V. Bedenko, Hybrid thorium energy producing subcritical stand with a fusion neutron source based on a magnetic trap, Izvestiya Wysshikh Uchebnykh Zawedeniy 2 (2019) 43-54, https://doi.org/10.26583/npe.2019.2.04. Yadernaya Energetika.   DOI
4 W. Gudowski, V. Arzhanov, C. Broeders, I. Broeders, J. Cetnar, R. Cummings, M. Ericsson, B. Fogelberg, C. Gaudard, A. Koning, P. Landeyro, Review of the European project - impact of Accelerator-Based Technologies on nuclear fission safety (IABAT), Prog. Nucl. Energy 38 (2001) 135-151, https://doi.org/10.1016/S0149-1970(00)00099-8.   DOI
5 S. Shiroya, A. Yamamoto, K. Shin, T. Ikeda, S. Nakano, H. Unesaki, Basic study on neutronics of future neutron source based on accelerator driven subcritical reactor concept in Kyoto University Research Reactor Institute (KURRI), Prog. Nucl. Energy 40 (3-4) (2002) 489-496, https://doi.org/10.1016/S0149-1970(02)00042-2.   DOI
6 A.V. Anikeev, P.A. Bagryansky, A.A. Ivanov, A.N. Karpushov, S.A. Korepanov, V.V. Maximov, S.V. Murakhtin, A. Yu Smirnov, K. Noack, G. Otto, Fast ion relaxation and confinement in the gas dynamic trap, Nucl. Fusion 40 (4) (2000) 753-766. https://iopscience.iop.org/article/10.1088/0029-5515/40/4/301/pdf.   DOI
7 A.V. Arzhannikov, V.M. Shmakov, D.G. Modestov, S.V. Bedenko, V.V. Prikhodko, I.O. Lutsik, I. V, Shamanin, Facility to Study Neutronic Properties of a Hybrid Thorium Reactor with a Source of Thermonuclear Neutrons Based on a Magnetic Trap, Nuclear Engineering and Technology, 2020, https://doi.org/10.1016/j.net.2020.05.003.
8 Y. Wu, Design and R&D progress of China lead-based reactor for ADS research facility, Engineering 2 (1) (2016) 124-131, https://doi.org/10.1016/J.ENG.2016.01.023.   DOI
9 H.A. Abderrahim, P. Baeten, D.D. Bruyn, R. Fernandez, MYRRHAeA multipurpose fast spectrum research reactor, Energy Convers. Manag. 63 (2012) 4-10, https://doi.org/10.1016/j.enconman.2012.02.025.   DOI
10 L. Yang, W. Zhan, A new concept for ADS Spallation target: gravity-driven dense granular flow targets, in: J.P. Revol, M. Bourquin, Y. Kadi, E. Lillestol, J.C. de Mestral, K. Samec (Eds.), Thorium Energy for the World, Springer, Cham, 2016, https://doi.org/10.1007/978-3-319-26542-1_47.
11 D.V. Yurov, V.V. Prikhodko, Yu A. Tsidulko, Nonstationary model of an axisymmetric mirror trap with nonequilibrium plasma, Plasma Phys. Rep. 42 (3) (2016) 210-225, https://doi.org/10.1134/S1063780X16030090.   DOI
12 Y.Z. Kandiev, E.A. Kashaeva, K.E. Kuropatenko, E.S. Lobanova, L.V. Lukin, G.N. Malakhov, A.A. Malyshkin, G.N. Modestov, D.G. Mukhamadiev, R.F. Orlov, V. G, PRIZMA status, Ann. Nucl. Energy 82 (2015) 116-120, https://doi.org/10.1016/j.anucene.2014.09.006.   DOI
13 Evaluated Nuclear Data Library Descriptions, Nuclear energy agency. https://oecd-nea.org/dbdata/data/nds_eval_libs.htm, 2020. (Accessed 3 March 2019).
14 S.A. Linnik, A.V. Gaydachuk, I.V. Shamanin, Istochnik Plazmy Tlejushhego Razrjada S Effektom Pologe Katoda Dlja Modifikacii Svojstv Poverhnosti I Nanesenija Pokrytij, vol. 318, Izvestija Tomskogo politehnicheskogo universiteta, 2011, pp. 86-88.
15 J. Leppaanen, M. Pusa, T. Viitanen, V. Valtavirta, T. Kaltiaisenaho, The Serpent Monte Carlo code: status, development and applications in 2013, Ann. Nucl. Energy 82 (2015) 142-150, https://doi.org/10.1016/j.anucene.2014.08.024.   DOI
16 G. Black, M.A.T. Black, D. Solan, D. Shropshire, Carbon free energy development and the role of small modular reactors: a review and decision framework for deployment in developing countries, Renew. Sustain. Energy Rev. 43 (2015) 83-94, https://doi.org/10.1016/j.rser.2014.11.011.   DOI
17 I.V. Shamanin, V.M. Grachev, Yu B. Chertkov, S.V. Bedenko, O. Mendoza, V.V. Knyshev, Neutronic properties of high-temperature gas-cooled reactors with thorium fuel, Ann. Nucl. Energy 113 (2018) 286-293, https://doi.org/10.1016/j.anucene.2017.11.045.   DOI
18 S.V. Bedenko, N. Ghal-Eh, I.O. Lutsik, I.V. Shamanin, A fuel for generation IV nuclear energy system: isotopic composition and radiation characteristics, Appl. Radiat. Isot. 147 (2019) 189-196, https://doi.org/10.1016/j.apradiso.2019.03.005.   DOI
19 S. Bedenko, A. Karengin, N. Ghal-Eh, N. Alekseev, V. Kynshev, I. Shamanin, Thermo-physical properties of dispersion nuclear fuel for a new-generation reactor: a computational approach, AIP Conference Proceedings 2101 (2019), 020002, https://doi.org/10.1063/1.5099594.   DOI
20 National Research Tomsk Polytechnic University. https://tpu.ru/en, 2020. (Accessed 20 September 2020).
21 H.E. Garcia, A. Mohanty, W.C. Lin, R.S. Cherry, Dynamic analysis of hybrid energy systems under flexible operation and variable renewable generationePart I: dynamic performance analysis, Energy 52 (2013) 1-16, https://doi.org/10.1016/j.energy.2013.01.022.   DOI
22 A. Beklemishev, A. Anikeev, V. Astrelin, P. Bagryansky, A. Burdakov, V. Davydenko, D. Gavrilenko, A. Ivanov, I. Ivanov, M. Ivantsivsky, I. Kandaurov, Novosibirsk project of gas-dynamic multiple-mirror trap, Fusion Sci. Technol. 63 (2013) 46-51, https://doi.org/10.13182/FST13-A16872.   DOI
23 M.K. Rowinski, T.J. White, J. Zhao, Small and Medium sized Reactors: a review of technology, Renew. Sustain. Energy Rev. 44 (2015) 643-656, https://doi.org/10.1016/j.rser.2015.01.006.   DOI
24 A. Arzhannikov, S. Bedenko, V. Shmakov, V. Knyshev, I. Lutsik, V. Prikhodko, I. Shamanin, Gas-cooled thorium reactor at various fuel loadings and its modification by a plasma source of extra neutrons, Nucl. Sci. Tech. 30 (2019) 181, https://doi.org/10.1007/s41365-019-0707-y.   DOI
25 Gas-Dynamic Multiple-Mirror Trap, Budker Institute of nuclear physics of Siberian branch Russian academy of Sciences, 20.08.20, http://inp.nsk.su, 2020.
26 A.V. Anikeev, P.A. Bagryansky, A.D. Beklemishev, A.A. Ivanov, O.A. Korobeinikova, Y.V. Kovalenko, A.A. Lizunov, V.V. Maximov, S.V. Murakhtin, E.I. Pinzhenin, V.V. Prikhodko, The GDT experiment: status and recent progress in plasma parameters, Fusion Sci. Technol. 68 (1) (2015) 1-7, https://doi.org/10.13182/FST14-867.   DOI
27 A. Gandini, M. Salvatores, The physics of subcritical multiplying systems, J. Nucl. Sci. Technol. 39 (6) (2002) 673-686, https://doi.org/10.1080/00223131.2019.1699188.   DOI
28 J. Knaster, F. Arbeiter, P. Cara, S. Chel, A. Facco, R. Heidinger, A. Ibarra, A. Kasugai, H. Kondo, G. Micciche, K. Ochiai, IFMIF, the European-Japanese efforts under the Broader Approach agreement towards a Li(d,xn) neutron source: current status and future options, Nucl. Materials Energ 9 (2016) 46-54, https://doi.org/10.1016/j.nme.2016.04.012.   DOI