• Title/Summary/Keyword: copper-coated polymer film

Search Result 4, Processing Time 0.021 seconds

Effects of Pretreatments of PET Substrate on the Adhesion of Copper Films Prepared by a Room Temperature ECR-MOCVD Method (PET 기질의 전처리효과가 상온 ECR 화학증착법에 의해 증착된 구리박막의 계면접착력에 미치는 영향)

  • Hyun Jin;Jeon Bupju;Byun Dongjin;Lee Joongkee
    • Korean Journal of Materials Research
    • /
    • v.14 no.3
    • /
    • pp.203-210
    • /
    • 2004
  • Effects of various pretreatments on the adhesion of copper-coated polymer films were investigated. Copper-coated polymer films were prepared by an electron cyclotron resonance-metal organic chemical vapor deposition (ECR-MOCVD) coupled with a DC bias system at room temperature. PET(polyethylene terephthalate) film was employed as a substrate material and it was pretreated by industrially feasible methods such as chromic acid, sand-blasting, oxygen plasma and ion-implantation treatment. Surface characterization of the copper-coated polymer film was carried out by AFM(Atomic Force Microscopy) and FESEM(Field Emission Scanning Electron Microscopy). Surface energy was calculated by based on the value of the contact angle measured. The adhesion of copper/PET films was determined by a pull-off test according to ASTM D-5179. It was found that suitable pretreatment of the PET substrate was required for obtaining good adhesion property between copper films and the substrate. In this study the highest adhesion was observed in sand-blasting, and then followed by those of acid and oxygen plasma treatment. However, the effect of surface energy was insignificant in our experimental range. This is probably due to compensating the difference in surface energy from various pretreatments by exposing substrate to ECR plasma for 5 min or longer at the early stage of the copper deposition. Therefore, it can be concluded that surface roughness of the polymer substrate plays an important role to determine the adhesion of copper-coated polymer for the deposition of copper by ECR-MOCVD.

Study on Improvement of Thermal Stability of Dendrite-shape Copper Particles by Electroless Silver Plating (Dendrite 형상 구리 입자의 무전해 은 도금에 의한 열적 안정성 향상에 관한 연구)

  • Hwang, In-Seong;Nam, Kwang Hyun;Chung, Dae-won
    • Applied Chemistry for Engineering
    • /
    • v.33 no.6
    • /
    • pp.574-580
    • /
    • 2022
  • While in the process of electroless plating of dendrite-shape copper with silver, various silver-coated copper (Ag@Cu) particles were prepared by using both displacement plating and reducing electroless plating. The physicochemical properties of Ag@Cu particles were analyzed by scanning electron microscope- energy-dispersive X-ray spectroscopy (SEM-EDS), thermogravimetric analysis (TGA), X-ray photoelectron spectroscopy (XPS), X-ray diffraction (XRD) and Brunauer-Emmett-Teller analysis (BET), and it was confirmed that the silver coated by the reducing electroless plating was formed as nano-particles on the copper surface. Ag@Cu particles were compounded with an epoxy resin to prepare a conductive film, and its thermal stability was evaluated. We investigated the effect of the difference between the displacement plating and reducing electroless plating on the initial resistance and thermal stability of conductive films.

The Effect of Functionalized Organosilane Coupling Agent on the Adhesion Properties of 2 Layer Flexible Copper Clad Laminate (기능성 실란커플링제가 2-FCCL의 접착특성에 미치는 영향)

  • Park, Jin-Young;Lim, Jae-Phil;Kim, Yong-Seok;Jung, Hyun-Min;Lee, Jae-Heung;Ryu, Jong-Ho;Won, Jong-Chan
    • Polymer(Korea)
    • /
    • v.33 no.6
    • /
    • pp.525-529
    • /
    • 2009
  • In order to manufacture 2-layer flexible copper clad laminate (FCCL) s having the excellent performance high adhesion properties between copper foil and polyimide film are required. Silane coupling agents with specific functional groups as an adhesion promoter are generally used to enhance the adhesion. In our study, we synthesized a novel silane coupling agent for increasing the adhesive property between copper layer and polyimide layer. The surface morphology of rolled copper foil, as a function of the concentrations of the coated silane coupling agent, was fully characterized. As fabricated 2-layer FCCL, we observed that adhesive properties were changed by the surface morphology and we confirmed that the novel silane coupling agent affects adhesive properties in FCCL with two types of poly (amic acid)s.

Copper phthalocyanine conjugated PANI coated screen printed carbon electrode for electrochemical sensing of 4-NP

  • Ramalingam Manikandan;Jang-Hee Yoon;Seung-Cheol Chang
    • Journal of the Korean institute of surface engineering
    • /
    • v.56 no.1
    • /
    • pp.40-54
    • /
    • 2023
  • In this work, we synthesized a novel electrochemical sensing materials based on tetracarboxylic copper phthalocyanine (TcCuPtc) conjugated PANI (TcCuPtc@PANI). The synthesized materials were employed to modify the screen-printed carbon electrode (SPCE) for the selective sensing of 4-nitrophenol. The TcCuPtc was conjugated with conducting polymer of PANI through the electrostatic interaction and π-π electron conjugation, the polymer film of PANI to inhibit the leakage of TcCuPtc from the surface of the electrode. The prepared TcCuPtc@PANI were characterized and confirmed by scanning electron microscopy (SEM) with EDX, ATR-IR, UV-vis absorption spectroscopy, cyclic voltammetry, and differential pulse voltammetry techniques. The prepared TcCuPtc@PANI/SPCE showed an excellent electrocatalytic sensing of 4-NP in the linear concentrations from 3 to 500 nM with a LOD of 0.03 nM and a sensitivity of 8.8294 ㎂/nM cm-2. However, the prepared TcCuPtc@PANI/SPCE showed selective sensing of 4-NP in the presence of other interfering species. The practical applicability of the TcCuPtc@PANI/SPCE was employed for the sensing of 4-NP in different water samples by standard addition method and showed satisfactory recovery results.