• Title/Summary/Keyword: copper terminals

Search Result 9, Processing Time 0.027 seconds

Thermal Quench at Current Terminals of the Conduction-cooled HTS Wire (전도냉각형 고온초전도 Wire의 전류도입부에서의 열적 퀜치)

  • Bae, Joon-Han;Bae, Duck-Kweon;Park, Hae-Yong;Shon, Myung-Hwan;Seong, Ki-Chul
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.22 no.7
    • /
    • pp.602-605
    • /
    • 2009
  • The heat generation in the high-$T_c$ superconducting (HTS) wire is related with the cost efficiency and safe factor of HTS devices. This paper deals with the thermal quench at the conduction-cooled joint between HTS wire and copper terminals. The 3-D numerical simulation of thermal distributions in part of the copper terminals was implemented and the premature quench at copper block was observed through the test. The results will be helpful to design the conduction-cooled HTS magnets.

Thermal Quench at Current Terminals of the Conduction-Cooled HTS Magnet (전도냉각형 HTS 자석의 전류도입부에서의 열적 퀜치)

  • Bae, Joon-Han;Bae, Duck-Kweon;Park, Hae-Yong;Shon, Myung-Hwan;Seong, Ki-Chul
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2008.11a
    • /
    • pp.358-359
    • /
    • 2008
  • The heat generated in the high-Tc superconducting (HTS) devices is related with the cost efficiency and safe factor of HTS devices. This paper deals with the quench at the conduction-cooled joint between the HTS wire and copper terminals. The 3-D numerical simulation of this phenomenon was implemented and compared with the experimental results. The experiment was implemented with the HTS wire mounted on the copper blocks cooled with a Gifford McMahon (GM) cryocooler.

  • PDF

A novel low resistivity copper diffusion joint for REBa2Cu3O7-δ tapes by thermocompression bonding in air

  • Wei, Ren;Zhen, Huang;Fangliang, Dong;Yue, Wu;Zhijian, Jin
    • Progress in Superconductivity and Cryogenics
    • /
    • v.24 no.4
    • /
    • pp.16-24
    • /
    • 2022
  • Applications of REBa2Cu3O7-δ tapes require joints with a simple manufacturing process, low resistance and good mechanical properties. In the present study, we successfully developed a copper diffusion joint between Cu-stabilized REBa2Cu3O7-δ tapes that meets the above requirements without solder simply by applying flux, heat and pressurization. After a 3 min thermocompression process at approximately 150 δ and 336 MPa in air, two tapes were directly connected between Cu stabilizers by copper diffusion, which was proven by microstructure analysis. The specific resistivity of the copper diffusion joint reached 5.8 nΩ·cm2 (resistance of 0.4 nΩ for a 306 mm splicing length) at 77 K in the self-field. The axial tensile stress reached 200 N without critical current degradation. The results show promise for the preparation of copper diffusion joints to be used in coils, attached tapes, and wire/cable terminals.

Contact Resistance between Flexible Tactile Sensor Fabricated by Direct Write and Copper Alloy Terminals (Direct write 기술로 제작된 유연촉각센서와 동합금 단자의 접촉저항)

  • Kim, Jindong;Bae, Yonghwan;Yun, Haeyong;Lee, Inhwan;Kim, Hochan
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.19 no.10
    • /
    • pp.111-116
    • /
    • 2020
  • Flexible tactile sensors, which are primarily used as grippers in robots, are mainly used to handle highly elastic or highly flexible objects. That is, flexible grippers are used when an object cannot be sufficiently controlled by applying a specific output force or taking a specific grabbing action. This is because a flexible tactile sensor needs to measure the pressure applied directly to held objects while deforming according to the shape of the object to be handled. CNT-based sensors used to be made from a highly flexible polymer to give flexibility and it is known that the sensors are greatly affected by the contact resistance of the terminal that connects the sensor to an electrical circuit; therefore, this paper clarifies the contact resistance of MWCNTs-based flexible tactile sensors and terminals. The effects of main and plating materials for terminals are investigated and the combinations of main and plating materials that exhibit contact resistance are measured in a typical industrial environment.

Wafer-Level Three-Dimensional Monolithic Integration for Intelligent Wireless Terminals

  • Gutmann, R.J.;Zeng, A.Y.;Devarajan, S.;Lu, J.Q.;Rose, K.
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • v.4 no.3
    • /
    • pp.196-203
    • /
    • 2004
  • A three-dimensional (3D) IC technology platform is presented for high-performance, low-cost heterogeneous integration of silicon ICs. The platform uses dielectric adhesive bonding of fully-processed wafer-to-wafer aligned ICs, followed by a three-step thinning process and copper damascene patterning to form inter-wafer interconnects. Daisy-chain inter-wafer via test structures and compatibility of the process steps with 130 nm CMOS sal devices and circuits indicate the viability of the process flow. Such 3D integration with through-die vias enables high functionality in intelligent wireless terminals, as vertical integration of processor, large memory, image sensors and RF/microwave transceivers can be achieved with silicon-based ICs (Si CMOS and/or SiGe BiCMOS). Two examples of such capability are highlighted: memory-intensive Si CMOS digital processors with large L2 caches and SiGe BiCMOS pipelined A/D converters. A comparison of wafer-level 3D integration 'lith system-on-a-chip (SoC) and system-in-a-package (SiP) implementations is presented.

A Study on the Effect of Metallic Fillers and Plastic for Ionic Migration (이온마이그레이션에 대한 플라스틱과 금속첨가제의 영향 연구)

  • Jeon, Sang Soo;Kim, Ji Jung;Lee, Ho Seung
    • Journal of Auto-vehicle Safety Association
    • /
    • v.13 no.2
    • /
    • pp.30-34
    • /
    • 2021
  • Electrical failures and reliability problems of electronic components by ionic migration between adjacent device terminals have become an issue in automotive electronics. Especially unlike galvanic corrosion, ionic migration is occurred at high temperature and high humidity under applied electric field condition. Until now, although extensive studies of the ionic migrations dealing with PCBs, electrodes, and solders were reported, there is no study on the effect of insulation polymers and metallic fillers for ionic migration. In this research, therefore, ionic migration induced by the types and contents of polymers and metallic fillers, and variety conditions of temperature, humidity, and applied voltage was studied in detail. Ester and amide types of liquid crystal polymer (LCP) and poly (phthalamide) (PPA) were used as base polymers, respectively and compounded with the metallic fillers of Copper iodide (CuI), Zinc stearate (Zn-st), or Calcium stearate (Ca-st) in various compositions. The compounding polymers were fabricated in IPC-B-24 of SIR test coupon according to ISO 9455-17 with Cu electrodes for ionic migration test. While there is no change in LCP-based samples, ionic migration in PPA compounding sample with a high water absorption property was accelerated in the presence of 0.25 wt% or above of CuI at the environmental conditions of 85℃, 85% RH and 48V. The dendritic short-circuit growth of Cu caused by ionic migration between the electrodes on the surface of compounded polymers was systematically observed and analyzed by using optical microscopy and SEM (EDX).

CPW-fed UWB Monopole Paper Antenna (CPW 급전 UWB 모노폴 종이 안테나)

  • Park, Dong-Kook
    • Journal of IKEEE
    • /
    • v.25 no.4
    • /
    • pp.607-612
    • /
    • 2021
  • This paper presents a novel CPW-fed UWB monopole paper antenna made by paper and copper tape. Through the simulation, the optimized antenna design parameters were obtained, and an antenna having an omni-directional radiation pattern and a gain of 2.2 dBi or more in the UWB frequency band of 3.1-10.6 GHz was designed. The antenna was manufactured using general A4 paper and copper tape, and the measurement result satisfies the return loss of -10dB or less in the UWB frequency band and confirm that the return loss characteristic was maintained even when the antenna plane was bent by 3 mm in the longitudinal direction. The proposed antenna is a wearable device that can provide services in the UWB band, and can be manufactured inexpensively by printing it with a conductive print on paper. So it can be used as a wearable antenna for UWB communication in various application fields such as logistics and disposable terminals.

Asymmetric Capacitive Sensor for On-line and Real-time Partial Discharge Detection in Power Cables

  • Changhee Son;Hyewon Cheon;Hakson Lee;Daekyung Kang;Jonghoo Park
    • Journal of Sensor Science and Technology
    • /
    • v.32 no.4
    • /
    • pp.219-222
    • /
    • 2023
  • Partial discharges (PD) have long been recognized as a major contributing factor to catastrophic failures in high-power equipment. As the demand for high voltage direct current (HVDC) facilities continues to rise, the significance of on-line and real-time monitoring of PD becomes increasingly prominent. In this study, we have designed, fabricated, and characterized a highly sensitive and cost-effective PD sensor comprising a pair of copper electrodes with different arc lengths. The key advantage of our sensor is its non-invasive nature, as it can be installed at any location along the entire power cable without requiring structural modifications. In contrast, conventional PD sensors are typically limited to installation at cable terminals or insulation joint boxes, often necessitating invasive alterations. Our PD sensor demonstrates exceptional accuracy in estimating PD location, with a success rate exceeding 95% in the straight sections of the power cable and surpassing 89% in curved sections. These remarkable characteristics indicate its high potential for realtime and on-line detection of PD.

Fabrication and Fault Test Results of Bi-2212/Cu-Ni Tubes for Superconducting Fault Current Limiting Elements (Bi-2212/Cu-Ni 튜브로 제작한 초전도 한류소자의 단락사고시험 결과)

  • Oh, S.Y.;Yim, S.W.;Yu, S.D.;Kim, H.R.;Hyun, O.B.
    • Progress in Superconductivity
    • /
    • v.10 no.1
    • /
    • pp.45-49
    • /
    • 2008
  • For the development of superconducting fault current limiters (SFCLs), fault current limiting elements were fabricated out of Bi-2212 bulk tubes and tested. The SFCL elements consisted of tube shaped Bi-2212 bulks and metal shunts for the stabilizers. Firstly, the Bi-2212 bulk tubes were processed based on a design of monofilar coils in order to acquire large resistance and high voltage rating. 300 mm-long Bi-2212 tubes were designed to have the current path of 410 cm in length with 24 turns and 41 mm in diameter. The processed monofilar coil, as designed, had 300 A $I_c$ at 77 K. The fabricated superconducting monofilar coils were affixed to Cu-Ni alloy as that of stabilizers. The Cu-Ni alloys were processed to have the same shape of the superconducting monofilar coils. The Cu-Ni coil had resistivity of 32 ${\mu}{\Omega}$-cm at 77 K and 37 ${\mu}{\Omega}$-cm at 300 K. The metal shunts were attached to the outside of the Bi-2212 monofilar coil by a soldering technique. After the terminals made of copper were attached to both ends of the superconductor-metal shunt composite, the gap between the turns and the surface of the elements was filled with an epoxy and a dense mesh made of FRP in order to enhance the mechanical strength. The completed SFCL elements went through fault tests, and we confirmed that the voltage rating of 143 $V_{rms}$ (E =0.35 $V_{rms}$/cm) could be accomplished.

  • PDF