• Title/Summary/Keyword: copper particle

Search Result 238, Processing Time 0.032 seconds

Manufacturing and Characterization of $CuInS_2$ Nanopowder for Compound Thin Film Solar Cell (화합물 박막 태양전지 적용을 위한 $CuInS_2$ 나노분말의 제조 및 특성 평가)

  • Lee, Dae-Girl;Lee, Nam-Hee;Oh, Hyo-Jin;Yun, Yeong-Ung;Hwang, Jong-Sun;Kim, Sun-Jae
    • Proceedings of the KIEE Conference
    • /
    • 2009.07a
    • /
    • pp.2113_2114
    • /
    • 2009
  • Chalcopyrite based sollar cells have received much attention because of their tunable electronic and optical properties. As a typical ternary chalcopyrite material, $CuInS_2$ has been considered as one of the most popular and promising candidates as absorber materials for photovoltaic applications because of its high absorption coefficient and environmental consideration. In this study, $CuInS_2$ powders have been synthesized using polyol process of a mixture of copper nitrate, indium nitrate, and thiourea with various stoichiometric molar ratios in ethylene glycol at $196^{\circ}C$. As boiling time goes by, the color of metal ion mixed solutions were changed transparent green to dark green and finally turned to black by reduction of OH- radicals. The prepared powders were fully characterized using SEM, XRD. The particle shape of black colored powders showed sphere with about 50 nm in particle size compared to those with dark green colored powders showed irregular shape with about $1{\mu}m$ in particle size. The XRD results showed highly crystallized $CuInS_2$.

  • PDF

Development of Nutrients and Heavy Metals Removal Technology in Saturated Zone Using Zeolite (포화 지층내 영양염류 및 중금속의 제거를 위한 제올라이트의 적용인자 도출)

  • 이승학;이재원;박준범;전연호;이채영
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2000.11a
    • /
    • pp.435-442
    • /
    • 2000
  • Batch test and column test were performed to develop the design factors for permeable reactive barriers(PRBs) against ammonium and heavy metals, Clinoptilolite, a kind of natural zeolites having excellent cation exchange capacity(CEC), was choosen for the reacting materials through the ion-exchange mechanism. In the batch test, the reactivity of clinoptilolite for ammonium, lead, and copper was examined varying the initial concentration of contaminants(ammonium: 20, 40, 80 ppm, heavy metals: 10, 20, 40 ppm) and the particle size of clinoptilolites(0-0.15, 0.42-0.85, 1-1.25 mm). The reactivity is increasing as the initial concentration decrease and particle size decrease. In the column test, the permeability and the reactivity of the specimens were examined using flexible-wall permeameter. Specimens were made of clinoptilolite and Jumunjin-sand with 20 : 80 weight ratio varying particle size of clinoptilolite. The maximum permeability(1${\times}$10$\^$-4/-5${\times}$10$\^$-5/cm/s) was achieved in the specimen made of 0.42-0.85 mm clinoptilolite and sand.

  • PDF

Characterization and Manufacturing for Solar Cells $CuInS_2$ Nanopowder by polyol process (Polyol process를 이용한 태양전지용 $CuInS_2$ 나노분말 제조 및 특성평가)

  • Lee, Dae-Girl;Lee, Nam-Hee;Oh, Hyo-Jin;Yun, Yeong-Ung;Hwang, Jong-Sun;Kim, Sun-Jae
    • Proceedings of the KIEE Conference
    • /
    • 2009.04a
    • /
    • pp.30-32
    • /
    • 2009
  • In this study, $CuInS_2$ powders have been synthesized using polyol process of a mixture of copper nitrate, indium nitrate, and thiourea with various stoichiometric molar ratios in ethylene glycol at 196$^{\circ}C$. As boiling time goes by, the color of metal ion mixed solutions were changed transparent green to dark green and finally fumed to black by reduction of $OH^-$ radicals. The prepared powders were fully characterized by SEM, XRD and UV-Vis. The particle shape of black colored powders showed sphere with about 30 nm in particle size compared to those with dark green colored powders showed irregular shape with about 1 ${\mu}m$ in particle size. The XRD results showed highly crystallized $CuInS_2$. The UV-Vis spectra showed broad shoulder at 430 and 780 nm corresponding to 2.78 and 1.58 eV for the dark green colored one and black colored one, respectively.

  • PDF

Influence of Dangling Bonds on Nanotribological Properties of Alpha-beam Irradiated Graphene

  • Hwang, Jinheui;Kim, Jong Hoon;Kwon, Sangku;Hwang, C.C.;Wu, Junqiao;Park, Jeong Young
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2013.02a
    • /
    • pp.265-265
    • /
    • 2013
  • We have investigated the influences of dangling bonds generated by alpha particle irradiation on friction and adhesion properties of graphene. Single layer of graphene grown with chemical vapor deposition on copper foil was irradiated by the alpha beam with the average energy of 3.04 MeV and the irradiation dosing between $1{\times}10^{14}$ and $1{\times}10^{15}$/$cm^3$. Raman spectroscopic showed that the ${\pi}$ electron states below Fermi level arises and the $I_D$/$I_G$ increases as increasing the dosing of alpha particle irradiation. The core level X-ray photoelectron (XPS) revealed that these defects represent the creation of various carbon-related defects and dangling bond. The nanoscale tribological properties were investigated with atomic force microscopy in ultrahigh vacuum. The friction appeared to increase remarkably as increasing the amount of dosing, indicating that the dangling bonds on graphene layers enhances the energy dissipations in friction. This trend can be explained by the additional channel of energy dissipation by dangling bond or O- and H- terminated clusters created by alpha particle irradiation.

  • PDF

The Effect on Breakdown of the Conducting Particles Between Coaxial Cylindrical Electrodes in $SF_6$ Gas ($SF_6$ 가스 동축원통전극 내의 금속이물이 절연파괴에 미치는 영향)

  • 조국희;권동진;이강수;곽희로
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.12 no.2
    • /
    • pp.85-90
    • /
    • 1998
  • This paper describes the breakdown characteristics of GIS by the free conducting particles under alternating voltage. If the conducting particles are present within the GIS, they can cause decrease in breakdown voltages. Various materials and sizes of free conducting particles were used to study the liftoff electric field and breakdown voltage. The measured lift-off electric fields were compared with the calculated ones for copper, steel and aluminium wire-type conducting particles. As an experimental result, it is shown that the breakdown voltages of the GIS chamber with conducting particles were lower than those without conducting particles, and were markedly dependent on the particle material and the particle sizes. Free conducting particles are important factor in particle-triggered breakdown of the GIS.he GIS.

  • PDF

Preparation and Characterization of Monodispersed and Nano-sized Cu Powders

  • Kim, Tea-Wan;Lee, Hyang-Mi;Kim, Yong-Yee;Hwang, Kyu-Hong;Park, Hong-Chae;Yoon, Seog-Young
    • Proceedings of the Korean Powder Metallurgy Institute Conference
    • /
    • 2006.09a
    • /
    • pp.464-465
    • /
    • 2006
  • Monodispersed and nano-sized Cu powders were synthesized from copper sulfate pentahydrate $(CuSO_4{\cdot}5H_2O)$ inside a nonionic polymer matrix by using wet chemical reduction process. The sucrose was used as a nonionic polymer network source. The influences of a nonionic polymer matrix on the particle size of the prepared Cu powders were characterized by means of X-ray diffraction), scanning electron microscopy), and particle size analysis). The smallen Cu powders with size of approximately 100 nm was obtained with adding of 0.04M sucrose at reaction temperature of $60\;^{\circ}C$. The particle size of the Cu powders prepared by the reduction inside polymer network was strongly dependent of the sucrose content and reaction temperature.

  • PDF

Particle Morphology via Change of Ground Particle for Various Experimental Conditions During a Grinding Process by Three Kinds of Media Mills (세 가지 매체형 분쇄기를 이용한 분쇄공정에서 다양한 실험 조건에 대한 입자형상변화)

  • Sakuragi, Shiori;Bor, Amgalan;Lee, Jehyun;Choi, Heekyu
    • Particle and aerosol research
    • /
    • v.11 no.1
    • /
    • pp.9-19
    • /
    • 2015
  • This study investigated the effects of ball mill operation condition on the morphology of raw powders in the dry-type milling process using three types of ball mills traditional ball mill, stirred ball mill and planetary ball mill. Furthermore, since spherical powders offer the best combination of high hardness and high density, the optimum milling condition to produce sphere-shaped powders was studied. The applied rotation speed ranged from 200rpm (low rotation speed) to 700rpm (high rotation speed). The used ball size ranged from 1mm to 5mm. The metal powder morphology was studied using SEM, XRD and PSA. The aimed spherical powders could be obtained under the optimum experimental conditions: traditional ball mill(200rpm, 1mm ball), planetary ball mill (500rpm, 1mm ball) and also planetary ball mill (700rpm, 1 and 3 mm ball). The results show to the development of new material using spherical type copper powder/CNT composites for air-craft and automotive applications.

Homologue Patterns of Polychlorinated Naphthalenes (PCNs) formed via Chlorination in Thermal Process

  • Ryu, Jae-Yong;Kim, Do-Hyong;Mulholland, James A.;Jang, Seong-Ho;Choi, Chang-Yong;Kim, Jong-Bum
    • Journal of Environmental Science International
    • /
    • v.21 no.8
    • /
    • pp.891-899
    • /
    • 2012
  • The chlorination pattern of naphthalene vapor when passed through a 1 cm particle bed of 0.5% (mass) copper (II) chloride ($CuCl_2$) mixed with silicon dioxide ($SiO_2$) was studied. Gas streams consisting of 92% (molar) $N_2$, 8% $O_2$ and 0.1% naphthalene vapor were introduced to an isothermal flow reactor containing the $CuCl_2/SiO_2$ particle bed. Chlorination of naphthalene was studied from 100 to $400^{\circ}C$ at a gas velocity of 2.7 cm/s. Mono through hexachlorinated naphthalene congeners were observed at $250^{\circ}C$ whereas a broader distribution of polychlorinated naphthalenes (PCNs) including hepta and octachlorinated naphthalenes was observed at $300^{\circ}C$. PCN production was peak at $250^{\circ}C$ with 3.07% (molar) yield, and monochloronaphthalene (MCN) congeners were the major products at two different temperatures. In order to assess the effect of a residence time on naphthalene chlorination, an experiment was also conducted at $300^{\circ}C$ with a gas velocity of 0.32 cm/s. The degree of naphthalene chlorination increased as a gas velocity decreased.

Copper/Nickel/Manganese Doped Cerium Oxides Based Catalysts for Hydrogenation of CO2

  • Toemen, Susilawati;Bakar, Wan Azelee Wan Abu;Ali, Rusmidah
    • Bulletin of the Korean Chemical Society
    • /
    • v.35 no.8
    • /
    • pp.2349-2356
    • /
    • 2014
  • The recycling technology by the catalytic conversion is one of the most promising techniques for the $CO_2$ treatment of coal burning power plant flue gases. The conversion of $CO_2$ to valuable product of $CH_4$ can be used as a fuel to run the turbine for electricity generation. Through this technique, the amount of coal needed for the combustion in a gas turbine can be reduced as well as $CO_2$ emissions. Therefore, a series of catalysts based on cerium oxide doped with copper, nickel and manganese were prepared by impregnation method. From the characterization analysis, it showed that the prepared catalysts calcined at $400^{\circ}C$ were amorphous in structure with small particle size in the range below 100 nm. Meanwhile, the catalyst particles were aggregated and agglomerated with higher surface area of $286.70m^2g^{-1}$. By increasing the calcination temperature of catalysts to $1000^{\circ}C$, the particle sizes were getting bigger (> 100 nm) and having moderate crystallinity with lower surface area ($67.90m^2g^{-1}$). From the catalytic testing among all the prepared catalysts, Mn/Ce-75/$Al_2O_3$ calcined at $400^{\circ}C$ was assigned as the most potential catalyst which gave 49.05% and 56.79% $CO_2$ conversion at reaction temperature of $100^{\circ}C$ and $200^{\circ}C$, respectively.

Structural, Optical and Photocatalyst Property of Copper-doped TiO2 Thin Films by RF Magnetron Co-sputtering (동시 스퍼터링법을 이용하여 Cu 도핑한 TiO2 박막의 구조적, 광학적 및 광분해 특성)

  • Heo, Min-Chan;Hong, Hyun-Joo;Hahn, Sung-Hong;Kim, Eui-Jung;Lee, Chung-Woo;Joo, Jong-Hyun
    • Korean Journal of Optics and Photonics
    • /
    • v.17 no.1
    • /
    • pp.104-109
    • /
    • 2006
  • Cu-doped $TiO_2$ thin films were prepared by RF magnetron co-sputtering, and their structural, optical and photodegradation. properties were examined as a function of calcination temperature. XRD results showed that the crystallite size of Cu/$TiO_2$ thin films was bigger than that of the pure $TiO_2$ thin films. SEM results revealed that the agglomerated particle size of the Cu/$TiO_2$ films was more uniform and smaller than that of pure $TiO_2$ films. The absorption edge of thin films calcined at $900^{\circ}C$ was red shifted, resulting from the phase transformation from anatase to rutile phase, and the transmittance of the thin film rapidly decreased due to an increase in particle size. The photodegradation properties of the Cu/$TiO_2$ thin films were superior to those of the pure $TiO_2$ thin films.