• Title/Summary/Keyword: copper hydroxide

Search Result 94, Processing Time 0.029 seconds

Non-sintering Preparation of Copper (II) Oxide Powder for Electroplating via 2-step Chemical Reaction

  • Lee, Seung Bum;Jung, Rae Yoon;Kim, Sunhoe
    • Journal of Electrochemical Science and Technology
    • /
    • v.8 no.2
    • /
    • pp.146-154
    • /
    • 2017
  • In this study, copper (II) oxide was prepared for use in a copper electroplating solution. Copper chloride powder and copper (II) oxide are widely used as raw materials for electroplating. Copper (II) oxide was synthesized in this study using a two-step chemical reaction. Herein, we developed a method for the preparation of copper (II) oxide without the use of sintering. In the first step, copper carbonate was prepared without sintering, and then copper (II) oxide was synthesized without sintering using sodium hydroxide. The optimum amount of sodium hydroxide used for this process was 120 g and the optimum reaction temperature was $120^{\circ}C$ regardless of the starting material.

Protective Activity of the Mixtures of Pine Oil and Copper Hydroxide against Bacterial Spot and Anthracnose on Red Pepper (파인 오일과 수산화동 혼합물에 의한 고추 세균점무늬병과 탄저병의 방제 효과)

  • Soh, Jae-Woo;Han, Kyung-Sook;Lee, Seong-Chan;Lee, Jung-Sup;Park, Jong-Han
    • Research in Plant Disease
    • /
    • v.20 no.3
    • /
    • pp.211-215
    • /
    • 2014
  • This research was performed to examine the protective activities of the mixtures of pine oil and copper hydroxide against bacterial spot and anthracnose on pepper plants. As for bacterial spot, the treatment of pine oil alone displayed high disease incidence (59.6%) and low protective effect (28.9%). In comparison, the treatments of mixtures and copper hydroxide alone showed protective activities of 66.8-76.1%. The mixture of pine oil and copper hydroxide (4:1) suppressed the most effectively bacterial spot on pepper. On the other hand, the mixture of pine oil and copper hydroxide (4:1) also showed the strongest protective effect against pepper anthracnose among the 4 treatments tested; its disease incidence and disease control value were 49.8% and 41.7%, respectively. The other treatments showed low protective activities with control values of 7.4-17.1%. These results suggested that the mixture of pine oil and copper hydroxide (4:1) can be used for the environmental-friendly disease control of bacterial spot and anthracnose on pepper.

Application of brass scrubber filter with copper hydroxide nanocomposite structure for phosphate removal

  • Hong, Ki-Ho;Yoo, In-Sang;Kim, Sae-Hoon;Chang, Duk;Sunwoo, Young;Kim, Dae-Gun
    • Environmental Engineering Research
    • /
    • v.20 no.2
    • /
    • pp.199-204
    • /
    • 2015
  • In this study, a novel phosphorus removal filter made of brass scrubber with higher porosity of over 96% was fabricated and evaluated. The brass scrubber was surface-modified to form copper hydroxide on the surface of the brass, which could be a phosphate removal filter for advanced wastewater treatment because the phosphates could be removed by the ion exchange with hydroxyl ions of copper hydroxide. The evaluation of phosphate removal was performed under the conditions of the batch type in wastewater and continuous type through filters. Filter recycling was also evaluated with retreatment of the surface modification process. The phosphate was rapidly removed within a very shorter contact time by the surface-modified brass scrubber filter, and the phosphate mass of 1.57 mg was removed per gram of the filter. The possibility of this surface-modified brass scrubber filter for phosphorus removal was shown without undesirable sludge production of existing chemical phosphorus removal techniques, and we feel that it would be very meaningful as a new wastewater treatment.

Manufacturing of Copper(II) Oxide Powder for Electroplating from NaClO3 Type Etching Wastes

  • Hong, In Kwon;Lee, Seung Bum;Kim, Sunhoe
    • Journal of Electrochemical Science and Technology
    • /
    • v.11 no.1
    • /
    • pp.60-67
    • /
    • 2020
  • In this study, copper (II) oxide powder for electroplating was prepared by recovering CuCl2 from NaClO3 type etching wastes via recovered non-sintering two step chemical reaction. In case of alkali copper carbonate [mCuCo3·nCu(OH)2], first reaction product, CuCo3 is produced more than Cu(OH)2 when the reaction molar ratio of sodium carbonate is low, since m is larger than n. As the reaction molar ratio of sodium carbonate increased, m is larger than n and Cu(OH)2 was produced more than CuCO3. In the case of m has same values as n, the optimum reaction mole ratio was 1.44 at the reaction temperature of 80℃ based on the theoretical copper content of 57.5 wt. %. The optimum amount of sodium hydroxide was 120 g at 80℃ for production of copper (II) oxide prepared by using basic copper carbonate product of first reaction. At this time, the yield of copper (II) oxide was 96.6 wt.%. Also, the chloride ion concentration was 9.7 mg/L. The properties of produced copper (II) oxide such as mean particle size, dissolution time for sulfuric acid, and repose angle were 19.5 mm, 64 second, and 34.8°, respectively. As a result of the hole filling test, it was found that the copper oxide (II) prepared with 120 g of sodium hydroxide, the optimum amount of basic hydroxide for copper carbonate, has a hole filling of 11.0 mm, which satisfies the general hole filling management range of 15 mm or less.

Synthesis, Characterization and Magnetic Properties of a Novel Disulfonate-pillared Copper Hydroxide Cu2(OH)3(DS4)1/2, DS4 = 1,4-Butanedisulfonate

  • Park, Seong-Hun;Lee, Cheol-Eui
    • Bulletin of the Korean Chemical Society
    • /
    • v.27 no.10
    • /
    • pp.1587-1592
    • /
    • 2006
  • We report the preparation, structure and magnetic properties of a new pillared complex, copper(II) hydroxy-1,4-butanedisulfonate, $Cu_2(OH)_3(O_3SC_4H_8SO_3)_{1/2}$. The titled compound was obtained by anion exchange, using copper hydroxyl nitrate $(Cu_2(OH)_3NO_3)$ as the starting material. According to the XRD data, this compound exhibits a pillared layered structure with organic layers tilted between the copper hydroxide layers with a tilt angle of $21.8^{\circ}$. FTIR spectroscopy confirms total exchange of nitrate by the sulfonate and indicates that the sulfonate functions are linked to the copper(II) ions with each aliphatic chain bridging the adjacent hydroxide layers. According to the dc and ac magnetic measurements, the title compound is a metamagnet consisting of spin-canted antiferromagnetic layers, with a Neel temperature of 11.8 K.

Chemical Control of Algae on Creeping Bentgrass Golf Greens (골프장 크리핑 벤트그래스 그린에 발생하는 조류(algae)의 약제방제)

  • 이혜원;정대영;심상렬
    • Asian Journal of Turfgrass Science
    • /
    • v.14 no.1
    • /
    • pp.263-272
    • /
    • 2000
  • A field study was carried out to find out the effective chemical for controlling algae without visual injury on creeping bentgrass golf greens. The results were as follows. 1. Chlorothalonil(75%), Metalaxy(7.5%)+Mancozeb(56%) and Mancozeb(75%) did not injure creeping bentgrass. Only chlorothalonil(75%) effectively controlled algae regardless of concentration among above mentioned 3 fungicides. 2. Mancozeb frequently used on golf courses showed about 50% effect on controling algae in this study. 3. Mancozeb(75%)+Copper hydroxide(73%) and Mancozeb(75%)+Streptomycin(100%) had good effects on algae control while injuring creeping bentgrass. 4. Copper hydroxide(73%) and copper sulfate basic(58%) $including\ulcorner$Cu$\lrcorner$showed effective algae control but caused injure creeping bentgrass. 5. Streptomycin has been scarcely used on golf greens but streptomycin(20%) 0.1g a.i/$\m^2$ had good control of algae and durability without injuring creeping bentgrass.

  • PDF

Removal of Copper from the Solution Containing Copper, Nickel, Cobalt and Iron (구리, 니켈, 코발트, 철 혼합용액(混合溶液)으로부터 구리의 제거(除去))

  • Park, Kyung Ho;Nam, Chul Woo;Kim, Hyun Ho;Barik, Smruti Prakash
    • Resources Recycling
    • /
    • v.22 no.6
    • /
    • pp.48-54
    • /
    • 2013
  • The methods to separate and remove copper in the mixed solution ((399 ppm Cu, 208 ppm Fe, 15.3 g/L Ni, 2.1 g/L Co) with nickel, cobalt and iron were investigated. With hydroxide precipitation method, copper and iron ions were completely precipitated and removed from the solution at pH 7 while some nickel and cobalt also were precipitated. 99.75% copper could be precipitated and removed as copper sulfide from the solution with adding $Na_2S$ (1.25 w/v concentration) of 2 times equivalent of Cu at pH 1. Copper was selectively absorbed on TP 207 ion exchange resin at equilibrium pH 2.0 and could be eluted from copper-loaded resin using 5% $H_2SO_4$.

Wire-like Bundle Arrays of Copper Hydroxide Prepared by the Electrochemical Anodization of Cu Foil

  • La, Duc-Duong;Park, Sung-Yeol;Choi, Young-Wook;Kim, Yong-Shin
    • Bulletin of the Korean Chemical Society
    • /
    • v.31 no.8
    • /
    • pp.2283-2288
    • /
    • 2010
  • Nanostructured copper compounds were grown by electrochemical anodization of copper foil in aqueous NaOH under varying conditions including electrolyte concentration, reaction temperature, current density, and reaction time. Their morphology and atomic composition were investigated by using SEM, TEM, XRD, EDS and XPS. At the conditions ([NaOH] = 1 M, $20^{\circ}C$, $2\;mA\;cm^{-2}$), wire-like orthorhombic $Cu(OH)_2$ nanobundles with an average width of 100 - 300 nm and length of $10\;{\mu}m$ were synthesized with the preferential [100] growth direction. Furthermore, when the concentration decreased to 0.5 M NaOH, the 1D nanobundle structure became narrower and longer without any change in compositions or crystalline structure. Side reaction pathways appeared to compete with the 1D nanostructure formation channels: the formation of CuO nanoleaves at $50^{\circ}C$ via the sequential dehydration of $Cu(OH)_2$, CuO/$Cu_2O$ aggregates in 4 M NaOH, and $Cu_2O$ nanoparticles and CuO nanosheets at lower current density.

A New On-line Coprecipitation Preconcentration Technique for Trace Metal Analysis by ICP-AES

  • Park, Gyeong Hui;Park, Yong Nam
    • Bulletin of the Korean Chemical Society
    • /
    • v.16 no.5
    • /
    • pp.422-427
    • /
    • 1995
  • In a stream of water sample, trace metal ions are quantitatively coprecipitated with Indium hydroxide and filtered. The filtered precipitate is continuously dissolved in 3 M nitric acid and introduced to ICP directly. The lead, cadmium, and copper are concentrated more than 10-fold and determined with ICP-AES at a sampling frequency of 10/hour. The detection limits are 2.89, 1.43,0.52 ppb for lead, cadmium, and copper respectively. Recoveries of lead, cadmium, and copper are 98.7, 94.3, and 104.5% respectively. The RSD values for three elements are about 3-5% currently.

Preparation and Characterization of Copper Oxychloride from Acidic Copper Chloride Etchant (PCB 산업에서 배출되는 산성 염화동 폐액으로부터 Copper Oxychloride의 제조 및 특성분석)

  • 김영희;김수룡;정상진;이윤주;어영선
    • Resources Recycling
    • /
    • v.12 no.2
    • /
    • pp.3-10
    • /
    • 2003
  • Copper oxychloride used as an agricultural fungicide has been recovered from copper-containing waste etchant by the neutralization with alkali hydroxides. Large amount of copper-containing waste etchant is generated from Printed Circuit Board industry. In an environmental and economic point of view, retrieve of the valuable natural resource from the waste is important. Recycling process of copper oxychloride from the waste etchant is discovered through the our study. In the range of reaction temp. 2$0^{\circ}C$-4$0^{\circ}C$, pH 5-7, pure copper oxychloride was able to prepare and the yield of copper oxychloride was higher than 95%. Physical properties of the sample have been characterized using SEM, XRD, TGA, ICP and Atomic absorption spectroscopy.