DOI QR코드

DOI QR Code

Wire-like Bundle Arrays of Copper Hydroxide Prepared by the Electrochemical Anodization of Cu Foil

  • La, Duc-Duong (Department of Applied Chemistry, and Graduate School of Bio-Nano Engineering, Hanyang University) ;
  • Park, Sung-Yeol (Department of Applied Chemistry, and Graduate School of Bio-Nano Engineering, Hanyang University) ;
  • Choi, Young-Wook (Process Materials Research Institute, Cheil Industries Inc.) ;
  • Kim, Yong-Shin (Department of Applied Chemistry, and Graduate School of Bio-Nano Engineering, Hanyang University)
  • Received : 2009.08.05
  • Accepted : 2010.06.23
  • Published : 2010.08.20

Abstract

Nanostructured copper compounds were grown by electrochemical anodization of copper foil in aqueous NaOH under varying conditions including electrolyte concentration, reaction temperature, current density, and reaction time. Their morphology and atomic composition were investigated by using SEM, TEM, XRD, EDS and XPS. At the conditions ([NaOH] = 1 M, $20^{\circ}C$, $2\;mA\;cm^{-2}$), wire-like orthorhombic $Cu(OH)_2$ nanobundles with an average width of 100 - 300 nm and length of $10\;{\mu}m$ were synthesized with the preferential [100] growth direction. Furthermore, when the concentration decreased to 0.5 M NaOH, the 1D nanobundle structure became narrower and longer without any change in compositions or crystalline structure. Side reaction pathways appeared to compete with the 1D nanostructure formation channels: the formation of CuO nanoleaves at $50^{\circ}C$ via the sequential dehydration of $Cu(OH)_2$, CuO/$Cu_2O$ aggregates in 4 M NaOH, and $Cu_2O$ nanoparticles and CuO nanosheets at lower current density.

Keywords

References

  1. Cao, G. Nanostructures & nanomaterials: Synthesis, Properties & Application; Imperial college press: London, 2004; pp 110-173.
  2. Ozin, G. A.; Arsenault, A. C. Nanochemistry: A Chemical Approach to Nanomaterials; RSC publishing: Cambridge, 2005; pp 167-265.
  3. Ajayan, P. M.; Stephan, O.; Redlich, Ph.; Colliex, C. Nature 1995, 375, 564. https://doi.org/10.1038/375564a0
  4. Ha, W.; Fan, S.; Li, Q.; Hu, Y. Science 1997, 277, 1287. https://doi.org/10.1126/science.277.5330.1287
  5. Xia, Y.; Rogers, J. A.; Paul, K. E.; Whitesides, G. M. Chem. Rev. 1999, 99, 1823. https://doi.org/10.1021/cr980002q
  6. Xia, Y.; Yang, P.; Sun, Y.; Wu, Y.; Brian, M.; Byron, G.; Yin, Y.; Kim, Y.; Yan, H. Adv. Mater. 2003, 15, 353. https://doi.org/10.1002/adma.200390087
  7. Wen, X.; Zhang, W.; Yang, S. Nano Lett. 2002, 2, 1397. https://doi.org/10.1021/nl025848v
  8. Zhang, W.;Wen, X.; Yang, S.; Berta, Y.; Wang, Z. L. Adv. Mater. 2003, 15, 822. https://doi.org/10.1002/adma.200304840
  9. Zhang, W.; Wen, X.; Yang, S. Inorg. Chem. 2003, 42, 5005. https://doi.org/10.1021/ic0344214
  10. Wen, X.; Zhang, W.; Yang, S. Langmuir 2003, 19, 5898. https://doi.org/10.1021/la0342870
  11. Wen, X.; Xie, Y.; Choi, C. L.; Wan, K. C.; Li. X.-Y.; Yang, S. Langmuir 2005, 21, 4729. https://doi.org/10.1021/la050038v
  12. Shoesmith, D. W.; Rummery, T. E.; Owen, D.; Lee, W. J. Electrochem. Soc. 1976, 123, 790. https://doi.org/10.1149/1.2132934
  13. Wu, X.; Bai, H.; Zhang, J.; Chen, F.; Shi, G. J. Phys. Chem. B 2005, 109, 22836. https://doi.org/10.1021/jp054350p
  14. Pan, Q.; Jin, H.; Wang, H. Nanotechnology 2007, 18, 355605. https://doi.org/10.1088/0957-4484/18/35/355605
  15. Wu, X.; Shi, G. J. Phys. Chem. B 2006, 110, 11247. https://doi.org/10.1021/jp056969x
  16. Chen, X.; Kong, L.; Dong, D.; Yang, G.; Yu, L.; Chen, J.; Zhang, P. Appl. Surf. Sci. 2009, 255, 4015. https://doi.org/10.1016/j.apsusc.2008.10.104
  17. Pan, Q.; Wang, M.; Wang, H. Appl. Surf. Sci. 2008, 254, 6002. https://doi.org/10.1016/j.apsusc.2008.03.034
  18. Wang, S.; Song, Y.; Jiang, L. Nanotechnology 2007, 18, 015103. https://doi.org/10.1088/0957-4484/18/1/015103
  19. Hou, H.; Xie, Y.; Li, Q. Cryst. Growth Des. 2005, 5, 201. https://doi.org/10.1021/cg049972z
  20. Xu, H.; Wang, W.; Zhu, W.; Zhou, L.; Ruan, M. Cryst. Growth Des. 2007, 7, 2720. https://doi.org/10.1021/cg060727k
  21. Reitz, J. B.; Solomon, E. I. J. Am. Chem. Soc. 1998, 120, 11467. https://doi.org/10.1021/ja981579s
  22. Wang, H.; Pan, Q.; Zhao, J.; Yin, G.; Zuo, P. J. Power Sources 2007, 167, 206. https://doi.org/10.1016/j.jpowsour.2007.02.008
  23. Hoque, E.; DeRose, J. A.; Houriet, R.; Hoffmann, P.; Mathieu, H. J. Chem. Mater. 2007, 19, 798. https://doi.org/10.1021/cm062318h
  24. http://www.lasurface.com.
  25. Vere, A. W. In Crystal Growth: Principles and Progress; Dobson, P. J., Ed.; Plenum Press: New York, 1987; p 17.
  26. Singh, D. P.; Neti, N. R.; Sinha, A. S. K.; Srivastava, O. N. J. Phys. Chem. C 2007, 111, 1638. https://doi.org/10.1021/jp0657179
  27. Becerra, J. G.; Salvarezza, R. C.; Arvia, A. J. Electrochimica Acta 1988, 33, 613. https://doi.org/10.1016/0013-4686(88)80059-8
  28. Shoesmith, D. W.; Rummery, T. E.; Owen, D.; Lee, W. J. Electrochem. Soc. 1976, 123, 790. https://doi.org/10.1149/1.2132934
  29. Bouillon, F.; Piron, J.; Stevens, J. Bull. Soc. Chim. Belges 1958, 67, 643. https://doi.org/10.1002/bscb.19580671102

Cited by

  1. Superhydrophobic CuO nanoneedle-covered copper surfaces for anticorrosion vol.3, pp.8, 2015, https://doi.org/10.1039/C4TA05730A
  2. Electrochemical behaviors of hierarchical copper nano-dendrites in alkaline media vol.11, pp.8, 2018, https://doi.org/10.1007/s12274-018-2010-3
  3. Synthesis of copper oxides films via anodic oxidation of copper foil followed by thermal reduction vol.347, pp.1757-899X, 2018, https://doi.org/10.1088/1757-899X/347/1/012010
  4. Yucca fern shaped CuO nanowires on Cu foam for remitting capacity fading of Li-ion battery anodes vol.8, pp.1, 2018, https://doi.org/10.1038/s41598-018-24963-2
  5. A stable superhydrophobic and superoleophilic Cu mesh based on copper hydroxide nanoneedle arrays vol.257, pp.13, 2011, https://doi.org/10.1016/j.apsusc.2011.01.078
  6. Molecular-Scale Investigation of Reconstructed Copper Surface Induced by Dissociative Adsorption of O2 vol.32, pp.4, 2010, https://doi.org/10.5012/bkcs.2011.32.4.1129
  7. Electrochemical fabrication of Cu(OH)2 and CuO nanostructures and their catalytic property vol.327, pp.1, 2010, https://doi.org/10.1016/j.jcrysgro.2011.05.025
  8. Formation of Flower-like Structures on Copper Foil Surface in Mixed Electrolytes of Water and Amides vol.65, pp.10, 2010, https://doi.org/10.4139/sfj.65.489
  9. Preparation of Nanosheet Copper Oxide Films by Anodic Oxidation of a Brass and Their Photoelectrochemical Performance vol.6, pp.3, 2010, https://doi.org/10.12677/ms.2016.63023
  10. Acetone sensing properties of CuO nanowalls synthesized via oxidation of Cu foil in aqueous NH4OH vol.150, pp.None, 2010, https://doi.org/10.1016/j.vacuum.2018.01.030
  11. Toward Robust Photoelectrochemical Operation of Cuprous Oxide Nanowire Photocathodes Using a Strategically Designed Solution-Processed Titanium Oxide Passivation Coating vol.11, pp.16, 2010, https://doi.org/10.1021/acsami.9b02727
  12. Continuous Directional Water Transport on Integrating Tapered Surfaces vol.7, pp.9, 2020, https://doi.org/10.1002/admi.202000081
  13. Ultrafast Growth of a Cu(OH)2-CuO Nanoneedle Array on Cu Foil for Methanol Oxidation Electrocatalysis vol.12, pp.24, 2010, https://doi.org/10.1021/acsami.0c08979
  14. A low cost flexible photocatalyst based on silver decorated Cu2O nanowires vol.2, pp.9, 2010, https://doi.org/10.1007/s42452-020-03354-1
  15. The Optical and Electrical Performance of CuO Synthesized by Anodic Oxidation Based on Copper Foam vol.13, pp.23, 2010, https://doi.org/10.3390/ma13235411
  16. Pushing the Limits of Rapid Anodic Growth of CuO/Cu(OH)2 Nanoneedles on Cu for the Methanol Oxidation Reaction: Anodization pH Is the Game Changer vol.4, pp.1, 2021, https://doi.org/10.1021/acsaem.0c02822