• Title/Summary/Keyword: copper coil

Search Result 143, Processing Time 0.028 seconds

The Copper Rotor Die-casting of Single Phase Induction Motor and the Stator Design for Reducing Loss (단상유도전동기의 동 다이캐스팅과 손실 저감을 위한 고정자 설계)

  • Lee, Sang-Hoon;Kim, Ki-Chan;Kim, Kwang-Soo;Kim, Won-Ho;Kim, Soo-Yong;Lee, Ju
    • Proceedings of the KIEE Conference
    • /
    • 2008.07a
    • /
    • pp.705-706
    • /
    • 2008
  • There has been, in recent years, effort to make cast copper rotors for industrial use of induction motors. Because the incorporation of copper for the conductor bars and end rings of the induction motor in place of aluminum would result in attractive improvements in motor energy efficiency. The purpose of this method is a reducing the copper loss as using higher conductivity of copper. In this paper as the single phase induction motor is studied, the stator slots and coil turn number is designed for adjusting the slot fill factor and improving its efficiency. At this time design is basis on calculation of reducing loss. And finally this paper shows that the before and after result is compared and analyzed.

  • PDF

A development and evaluation of the high power laser measurement system (고출력 레이저광 측정을 위한 계측 장치 제작 및 성능 평가)

  • 황대석;최종운;이영우
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2003.05a
    • /
    • pp.410-413
    • /
    • 2003
  • We have developed the measurement system for the high power laser The absorber is made of gold-plated copper cavity. The calibration heater is using a manganin(CuMn12Ni ; Isabellenhutte) coil, and output power is measured by using of resistance bridge with composed manganin and copper coil. Developed system can measure for 5∼1000w laser output power range. Calibration factors are 489.13 J/mV at 100W range and 489.13 J/mV at 500W range. Correction factors are 0.99 at 100W range and 1.006 at 500W range.

  • PDF

Fabrication and Operation Testing of an Air-cored Pulse Transformer for Charging a High Voltage Pulse Forming Line (고압 펄스 성형라인 충전을 위한 공심형 고압 펄스트랜스의 제작과 동작 특성)

  • Jin, Yun-Sik;Kim, Young-Bae;Kim, Jong-Soo;Ryoo, Hong-Je;Cho, Chu-Hyun;Rim, Geun-Hee;Lim, Soo-Won
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.59 no.5
    • /
    • pp.939-944
    • /
    • 2010
  • A high voltage air-cored helical strip/wire type pulse transformer has been fabricated for charging of a high voltage pulse forming line. As a primary coil, copper strip of 25mm width was wound helically around a MC nylon cylinder. For a secondary coil, copper enameled wire of 1mm diameter was wound around conical cylinder in order to provide insulation between two windings. The coupling coefficient of 0.53 was obtained when two coils were combined coaxially in the insulation oil filled chamber. Voltage gain and energy transfer efficiency were investigated by varying the parameters of primary and secondary circuit. Test results shows that the voltage gain increases up to 17 with increasing the primary capacitance up to 200nF. And highest energy transfer efficiency of 44% was obtained when the dual resonant operation condition was nearly satisfied. The pulse transformer developed in this study can be used for charging the middle conductor of a Blumlein pulse forming line.

Development of the laser measurement system for the wide output power range (광범위 출력 측정이 가능한 레이저 계측장치 개발)

  • Hwang Daeseok;Lee Young-Woo
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.9 no.8
    • /
    • pp.1799-1804
    • /
    • 2005
  • We have developed and estimated the measurement system of $CO_2$ and Nd:YAG laser power of wide range. The absorber is made of gold-plated copper cavity. The calibration heater is using a manganin(CuMn12Ni) coil, and output power is measured by using or resistance bridge with composed manganin and copper coil. Developed system can measure 5${\~}$1000W laser output power range. Calibration factors are 489.13J/mV at 100W and 497.04(J/mV) at 500W. correction factors are 0.99 at 100W and 1.006 at 500W.

Application of Amorphous wire to ECT(Eddy Current Testing) Probe (아몰퍼스 와이어의 ECT probe 적용에 대한 검토)

  • Kim, Y.H.;Shin, K.H.;SaGong, Gun
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2002.08a
    • /
    • pp.47-51
    • /
    • 2002
  • ECT(eddy currentign testing) is very effective technique to detect a flaw within a conductor. Co-based amorphous wire was used as a sensor head. The wire has almost 0 magneto-striction and high permeability. An uniform magnetic field was applied to 1mm thick copper plate and $25{\mu}m$ thick aluminum sheet conductor using spiral typed coil The size of the coil has $40mm{\times}40mm$ outer width and $8mm{\times}8mm$ inner width. The copper plate and aluminum sheet has 0.5mm and 0.1mm wide gap, respectively. The frequency range of applied field was 100kHz-600kHz. The induced voltage difference of 2.5mV was obtained in the maximum voltage and minimum one measured across the gap of the 1mm thick conductor. In the case of aluminum sheet, 0.4mV was obtained. From this results, the effectiveness of Co-based amorphous wire was confirmed in the ECT technique.

  • PDF

Development of Prepolarization Coil Current Driver in SQUID Sensor-based Ultra Low-field Magnetic Resonance Apparatuses (SQUID 센서 기반의 극저자장 자기공명 장치를 위한 사전자화코일 전류구동장치 개발)

  • Hwang, S.M.;Kim, K.;Kang, C.S.;Lee, S.J.;Lee, Y.H.
    • Progress in Superconductivity
    • /
    • v.13 no.2
    • /
    • pp.105-110
    • /
    • 2011
  • SQUID sensor-based ultra low-field magnetic resonance apparatus with ${\mu}T$-level measurement field requires a strong prepolarization magnetic field ($B_p$) to magnetize its sample and obtain magnetic resonance signal with a high signal-to-noise ratio. This $B_p$ needs to be ramped down very quickly so that it does not interfere with signal acquisition which must take place before the sample magnetization relaxes off. A MOSFET switch-based $B_p$ coil driver has current ramp-down time ($t_{rd}$) that increases with $B_p$ current, which makes it unsuitable for driving high-field $B_p$ coil made of superconducting material. An energy cycling-type current driver has been developed for such a coil. This driver contains a storage capacitor inside a switch in IGBT-diode bridge configuration, which can manipulate how the capacitor is connected between the $B_p$ coil and its current source. The implemented circuit with 1.2 kV-tolerant devices was capable of driving 32 A current into a thick copper-wire solenoid $B_p$ coil with a 182 mm inner diameter, 0.23 H inductance, and 5.4 mT/A magnetic field-to-current ratio. The measured trd was 7.6 ms with a 160 ${\mu}F$ storage capacitor. trd was dependent only on the inductance of the coil and the capacitance of the driver capacitor. This driver is scalable to significantly higher current of superconducting $B_p$ coils without the $t_{rd}$ becoming unacceptably long with higher $B_p$ current.

Development of 2W-Level Wireless Powered Energy Harvesting Receiver using 60Hz power line in Electricity Cable Tunnel (전력구 내 지중선을 이용한 2W급 상용주파수 무선전력 수신장치 개발)

  • Jang, Gi-Chan;Choi, Bo-Hwan;Rim, Chun-Taek
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.21 no.4
    • /
    • pp.296-301
    • /
    • 2016
  • Using high magnetic flux from a 60 Hz high-current cable, a 2 W wireless-powered energy harvesting receiver for sensor operation, internet of things (IoT) devices, and LED lights inside electrical cable tunnels is proposed. The proposed receiver comprises a copper coil with a high number of turns, a ring-shaped ferromagnetic core, a capacitor for compensating for the impedance of the coil in series, and a rectifier with various types of loads, such as sensors, IoT devices, and LEDs. To achieve safe and easy installation around the power cable, the proposed ring-shaped receiver is designed to easily open or close using a clothespin-shaped handle, which is made of highly-insulated plastic. Laminated silicon steel plates are assembled and used as the core because of their mechanical robustness and high saturation flux density characteristic, in which the thickness of each isolated plate is 0.3 mm. The series-connected resonant capacitor, which is appropriate for low-voltage applications, is used together with the proposed receiver coil. The concept of the figure of merit, which is the product weight and cost of both the silicon steel plate and the copper wire, is used for an optimized design; therefore, the weight of the fabricated receiver and the price of raw material is 750 gf and USD $2 each, respectively. The 2.2 W powering capability of the fabricated receiver was experimentally verified with a power cable current of $100A_{rms}$ at 60Hz.

Effects of surface-roughness and -oxidation of REBCO conductor on turn-to-turn contact resistance

  • Y.S., Chae;H.M., Kim;Y.S., Yoon;T.W., Kim;J.H., Kim;S.H., Lee
    • Progress in Superconductivity and Cryogenics
    • /
    • v.24 no.4
    • /
    • pp.40-45
    • /
    • 2022
  • The electrical/thermal stabilities and magnetic field controllability of a no-insulation (NI) high-temperature superconducting magnet are characterized by contact resistance between turn-to-turn layers, and the contact resistance characteristics are determined by properties of conductor surface and winding tension. In order to accurately predict the electromagnetic characteristics of the NI coil in a design stage, it is necessary to control the contact resistance characteristics within the design target parameters. In this paper, the contact resistance and critical current characteristics of a rare-earth barium copper oxide (REBCO) conductor were measured to analyze the effects of surface treatment conditions (roughness and oxidation level) of the copper stabilizer layer in REBCO conductor. The test samples with different surface roughness and oxidation levels were fabricated and conductor surface analysis was performed using scanning electron microscope, alpha step surface profiler and energy dispersive X-ray spectroscopy. Moreover, the contact resistance and critical current characteristics of the samples were measured using the four-terminal method in a liquid nitrogen impregnated cooling environment. Compared with as-received REBCO conductor sample, the contact resistance values of the REBCO conductors, which were post-treated by the scratch and oxidation of the surface of the copper stabilizer layer, tended to increase, and the critical current values were decreased under certain roughness and oxidation conditions.

Partial Discharge Characteristics of Epoxy for Ignition Coil (점화코일용 에폭시의 부분방전 특성)

  • Shin Jong-Yeol;Hong Jin-Woong
    • Journal of the Korean Society of Safety
    • /
    • v.19 no.4 s.68
    • /
    • pp.141-149
    • /
    • 2004
  • The automobile equipped with a gasoline engine uses the ignition coil, namely, a high voltage generator, to make the mixed fuel ignited and burned in the combustion chamber, which results in the power to drive the engine. The ignition coil functions to convert a low voltage of the primary into a hiか voltage of the secondary by switching method, which will be transmitted to the electrode. Here, if the ignition coil has a defect even a little, it cannot function well. In this study, it was chosen epoxy molding ignition coil in recently and epoxy resin which is insulation material as specimens, and it was measured the characteristics of the partial discharge occurring to the specimens when those were applied to a voltage, and thereby, it was researched and analyzed the distribution of phase angle, amount and count of discharge due to the changing voltage, And as the result is applying to the actual automobile ignition system, it can be expected the enhancement of the performance of the ignition coil and the reliability of the electrical equipment.

Design and test results of a Rogowski coil for measurement of current distribution characteristics in 4-parallel superconducting coils (사병렬 초전도코일의 전류분류 측정을 위한 Rogowski 코일의 제작 및 특성 실험)

  • Cho, Dae-Ho;Yang, S.E.;Kim, M.J.;Ahn, M.C.;Park, D.K.;Bae, D.K.;Seok, B.Y.;Ko, T.K.
    • Progress in Superconductivity and Cryogenics
    • /
    • v.9 no.3
    • /
    • pp.37-40
    • /
    • 2007
  • Large critical current is one of the prerequisites for the design of superconducting electrical equipments with large power capacity. To enlarge the critical current. multiple parallel connection is inevitable. In multiple parallel superconducting coils. the difference in normal resistance of each shunt leads to unequal current distribution. which may yield burnout. Therefore. uniform current distribution is required for a stable operation of multiple parallel superconducting coils. In this paper, Rogowski coils were fabricated to measure each shunt current of a 4-parallel superconducting coil. Four Rogowski coils were installed at the copper bars, which are used as current leads in superconducting coils. As a result, linearity of the Rogowski coils was ascertained and coefficients of each coil, the ratio of voltage and current, were derived. The coefficients were compared with theoretically calculated values. Based on the coefficients, each shunt current was calculated in a 4-parallel superconducting coil, where uniform current. distribution was confirmed. This paper verified the feasibility of the fabricated Rogowski coils as well as operational stability of the 4-parallel superconducting coil in 77K.