• Title/Summary/Keyword: copper adsorption

Search Result 209, Processing Time 0.023 seconds

SO2 Adsorption Characteristics by Cellulose-Based Lyocell Activated Carbon Fiber on Cu Additive Effects (셀룰로오스계 라이오셀 활성탄소섬유의 구리 첨착에 의한 SO2 흡착특성 변화)

  • Kim, Eun Ae;Bai, Byong Chol;Lee, Chul Wee;Lee, Young-Seak;Im, Ji Sun
    • Applied Chemistry for Engineering
    • /
    • v.26 no.4
    • /
    • pp.394-399
    • /
    • 2015
  • In this study, the Cu catalyst decorated with activated carbon fibers were prepared for improving $SO_2$ adsorption properties. Flame retardant and heat treatments of Lyocell fibers were carried out to obtain carbon fibers with high yield. The prepared carbon fibers were activated by KOH solution for the high specific surface area and controlled pore size to improve $SO_2$ adsorption properties. Copper nitrate was also used to introduce the Cu catalyst on the activated carbon fibers (ACFs), which can induce various reactions in the process; i) copper nitrate promotes the decomposition reaction of oxygen group on the carbon fiber and ii) oxygen radical is generated by the decomposition of copper oxide and nitrates to promote the activation reaction of carbon fibers. As a result, the micro and meso pores were formed and Cu catalysts evenly distributed on ACFs. By Cu-impregnation process, both the specific surface area and micropore volume of carbon fibers increased over 10% compared to those of ACFs only. Also, this resulted in an increase in $SO_2$ adsorption capacity over 149% than that of using the raw ACF. The improvement in $SO_2$ adsorption properties may be originated from the synergy effect of two properties; (i) the physical adsorption from micro, meso and specific surface area due to the transition metal catalyst effect appeared during Cu-impregnation process and ii) the chemical adsorption of $SO_2$ gas promoted by the Cu catalyst on ACFs.

The hydrogen adsorption of electrospun carbon fibers web involving transition metal (전이금속 함유 전기방사 된 탄소섬유 웹의 수소 흡장)

  • Im, Ji-Sun;Kim, Ju-Wan;Park, Soo-Jin;Kim, Young-Ho;Lee, Young-Seak
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2007.06a
    • /
    • pp.77-80
    • /
    • 2007
  • To increase the capacity of hydrogen adsorption, transition metals were adopted as catalyst. The PAN-based CNFs involving transition metal were obtained by electrospinning method and heat treatment. To study the surface of carbon fibers, SEM analysis was conducted. The mass of transition metals were spreaded or covered among CNFs. XRD and EDX analysis were used to confirm transition metals on the surface of carbon fibers. Volumetric method was used for studying the capacity of hydrogen adsorption on the carbon fibers involving transition metals. In this study. vanadium has the best characteristics among chromium, titanium, and copper for hydrogen adsorption.

  • PDF

Chloride Ion Effects on Anodic Dissolution of Copper in Aqueous NaCl Solutions under Argon Atmosphere (아르곤 분위기의 NaCl 수용액에서 구리의 산화 용해반응에 미치는 염화이온의 영향)

  • Chon, Jung-Kyoon;Kim, Youn-Kyoo
    • Journal of the Korean Electrochemical Society
    • /
    • v.11 no.3
    • /
    • pp.159-164
    • /
    • 2008
  • We investigated chloride ion effects on anodic dissolution of copper using potentiodynamic method, cyclic voltammtery, chronoamperometry and chronocoulometry. The anodic dissolution reaction of copper in NaCl solution under argon atmosphere is $Cu+2Cl^{-}{\rightleftharpoons}{CuCl_2}^{-}+e^-$ and chloride ion adsorption process in copper surface can be explained by Temkin isotherm.

Inhibition Effect of a Few Amino Acids on the Corrosion of Copper in Aerated Artificial Sea Water (공기가 포화된 인공해수에서 몇 가지 아미노산의 구리 부식 억제 효과)

  • Kim, Youn-Kyoo
    • Journal of the Korean Chemical Society
    • /
    • v.54 no.6
    • /
    • pp.680-686
    • /
    • 2010
  • Inhibition effects of alanine(Ala), asparagine(Asn), aspartic acid(Asp), glutamine(Gln) and methionine(Met) on the corrosion of copper were investigated in aerated artificial sea water. Amino acid adsorption process in copper surface can be explained by Temkin logarithmic isotherm due to the interaction between the adsorbed molecules. The inhibition efficiency for the copper corrosion depended on the concentration of amino acids.

Reduction Behaviors of Nitric Oxides on Copper-decorated Mesoporous Molecular Sieves

  • Cho, Ki-Sook;Kim, Byung-Joo;Kim, Seok;Kim, Sung-Hyun;Park, Soo-Jin
    • Bulletin of the Korean Chemical Society
    • /
    • v.31 no.1
    • /
    • pp.100-103
    • /
    • 2010
  • In this study, NO reduction behaviors of copper-loaded mesoporous molecular sieves (Cu/MCM-41) have been investigated. The Cu loading on MCM-41 surfaces was accomplished by a chemical reduction method with different Cu contents (5, 10, 20, and 40%). $N_2/77$ K adsorption isotherm characteristics, including the specific surface area and pore volume, were studied by BET's equation. NO reduction behaviors were confirmed by a gas chromatography. From the experimental results, the Cu loading amount on MCM-41 led to the increase of NO reduction efficiency in spite of decreasing the specific surface area of catalysts. This result indicates that highly ordered porous structure in the MCM-41 and the presence of active metal particles lead the synergistical NO reduction reactions due to the increase in adsorption energy of MCM-41 surfaces by the Cu particles.

Removal of Copper Ion with Iron-Oxide-Coated Sand (산화철 피복사에 의한 구리이온제거)

  • 곽명화;우성훈;김익성;박승조
    • Resources Recycling
    • /
    • v.9 no.1
    • /
    • pp.70-75
    • /
    • 2000
  • The sand particle was coated with $Fe_3O_4$ and then $Fe_2O_3$ that adsorption capacity was more excellent than $Fe_3O_4$ was mostly found in 2nd step for preparation of iron-oxide-coated sand (IOCS). The copper removal rate was 74.9 percent by adding 30 gram per liter iron-oxide-coated sand from the solution with 5 mg/l Cu in 20 minute. Breakthrough time occurred in 23 hours and adsorption capacity 0.87$\cdot$Cu/g$\cdot$IOCS in case of breakthrough copper concentration was 1.0 mg/l in the continuous test.

  • PDF

Determination of Thioglycolic acid in the presence of Copper(II) by Adsorptive Stripping Voltammetry (흡착 벗김 전압전류법에 의한 구리이온(II) 존재하에서 티오글리콜산의 정량)

  • Hong, Mi-Jeong;Kwon, Young-Sun
    • Analytical Science and Technology
    • /
    • v.8 no.1
    • /
    • pp.25-32
    • /
    • 1995
  • Determination method of trace thioglycolate has been studied by adsorptive stripping voltammetry. Copper(II)-thioglycolate complex is adsorbed at the hanging mercury drop electrode and stripped during cathodic scan. Electrolyte was used pH 6.5 phosphate and pH 9.5 borate buffer solutions. Optimal conditions were a copper(II) concentration $1{\times}10^{-4}M$, an adsorption accumulation potential -0.2V, an adsorption accumulation time 60 sec and a scan rate 20mV/sec. A detection limit of $1{\times}10^{-9}M$ thioglycolate was obtained. The method was applied to the determination of thioglycolate in cold wave fluids and depilating creams.

  • PDF

Surface Modification of Phosphoric Acid-activated Carbon in Spent Coffee Grounds to Enhance Cu(II) Adsorption from Aqueous Solutions

  • Choi, Suk Soon;Choi, Tae Ryeong;Choi, Hee-Jeong
    • Applied Chemistry for Engineering
    • /
    • v.32 no.5
    • /
    • pp.589-598
    • /
    • 2021
  • The purpose of this study was to analyze the efficiency with which phosphorylated spent coffee grounds (PSCG) remove cationic Cu(II) ions from an aqueous solution. The pHpzc of the SCG was 6.43, but it was lowered to 3.96 in the PSCG, confirming that an acidic functional group was attached to the surface of the PSCG. According to FT-IR analysis, phosphorylation of the SCG added P=O, P-O-C (aromatic), P=OOH, and P-O-P groups to the surface of the adsorbent, and the peaks of the carboxyl and OH groups were high and broad. Also, the specific surface area, mesopore range, and ion exchange capacity increased significantly by phosphorylation. The adsorption kinetics and isothermal experiments showed that Cu(II) adsorption using SCG and PSCG was explained by PSO and Langmuir models. The maximum Langmuir adsorption capacity of SCG and PSCG was 42.23 and 162.36 mg/g, respectively. The adsorption process of both SCG and PSCG was close to physical adsorption and endothermic reaction in which the adsorption efficiency increased with temperature. PSCG was very effective in adsorbing Cu(II) in aqueous solution, which has great advantages in terms of recycling resources and adsorbing heavy metals using waste materials.

Adsorption Characteristics of Ammonia Complex of Copper(II) on Activated Carbon (활성탄에 의한 구리(II) 암모니아 착염이온의 흡착 특성)

  • Hong, Wan-Hae;Kim, Jung-Gyu;Na, Sang-Kwon
    • Applied Chemistry for Engineering
    • /
    • v.8 no.1
    • /
    • pp.23-28
    • /
    • 1997
  • The adsorption characteristics of ammonia-Cu(II) complex on activated carbon were studied. Firstly, the specific surface area of the activated carbon was measured by using the BET adsorption apparatus. Secondly, the characteristics of the removal copper(II) ion from aqueous ammonia solution by forming a complex with ammonia and then by the adsorption of the complex on the activated carbon were studied. It was found that the specific surface area increases with decreasing the mesh number of the activated carbon, and the optimum pH for the adsorption of the Cu(II) ion on she activated carbon was found to be approximately 6. It was also found that the adsorbed Cu(II)-ammonia complexes on the activated carbon in the aqueous ammonia solution have two types, depending on the concentration of the solution ; i.e. $[Cu(NH_3){_2}]^{2+}$and $[Cu(NH_3){_3}]^{2+}$ for $2.25{\times}10^{-4}(mol/{\ell})$and $2.25{\times}10^{-3}(mol/{\ell})$, respectively.

  • PDF

Determination of Cadmium(II) and Copper(II) by Flame Atomic Absorption Spectrometry after Preconcentration on Column with Pulverized Amberlite XAD-4 with Bismuthiol I

  • Park, Dong-Seok;Choi, Hee-Seon
    • Bulletin of the Korean Chemical Society
    • /
    • v.28 no.8
    • /
    • pp.1375-1382
    • /
    • 2007
  • A column preconcentration method with pulverized Amberlite XAD-4 loaded with bismuthiol I (BI) has been developed for the determination of trace Cd(II) and Cu(II) in various real samples by flame atomic absorption spectrophotometry. Various experimental conditions, such as the size of XAD-4, adsorption flow rate, amount of bismuthiol I, stirring time for adsorbing bismuthiol I on XAD-4, pH of sample solution, amount of XAD-4- BI, desorption solvent, and desorption flow rate, were optimized. Also, the adsorption capacity and the adsorption rate of Cd(II) and Cu(II) on XAD-4-BI were investigated. The interfering effects of various concomitant ions were investigated, Bi(III), Sn(II) and Fe(III) were found to affect the determination. But the interference by these ions was completely eliminated by adjusting the amount of XAD-4-BI resin to 0.70 g, although the adsorption flow rate was slower. For Cd(II) our proposed technique obtained a dynamic range of 0.5-40 ng mL-1, a correlation coefficient (R2) of 0.9913, and a detection limit of 0.3 ng mL-1. For Cu(II), the corresponding values were 2.0-120 ng mL-1, 0.9921 and 1.02 ng mL-1. To validate this proposed technique, the aqueous samples (stream water, reservoir water, tap water and wastewater), the diluted brass sample and the plastic sample, as real samples, were used. Recovery yields of 91-103% were obtained. These measured data were not different from ICP-MS data at 95% confidence level. Our proposed method was also validated using rice flour CRM (normal, fortified) samples. From the results of our experiment, we found that the technique we present here can be applied to the determination of Cd(II) and Cu(II) in various real samples.