• Title/Summary/Keyword: copolymer thin films

Search Result 60, Processing Time 0.023 seconds

A Pathway to Microdomain Alignment in Block Copolymer/Nanoparticle Thin Films under Electric Field

  • Bae, Joonwon
    • Bulletin of the Korean Chemical Society
    • /
    • v.35 no.9
    • /
    • pp.2689-2693
    • /
    • 2014
  • The control over microstructure in block copolymer thin films using external electric fields has become an interesting research topic. In this article, the effect of nanoparticle on the microdomain alignments in block copolymer (polystyrene-b-poly(2-vinylpyridine)/nanoparticle (Au) thin films under electric fields has been examined with transmission electron microscopy. The homogeneous dispersion of Au nanoparticles into the block copolymer matrix was achieved by surface modification of nanoparticles with compatible ligands. Compared with the phenomenon seen in the pristine block copolymer thin films, a peculiar alignment behavior was observed in the block copolymer/nanoparticle hybrid thin films under electric fields. In addition, the different pathways observed in the pristine and nanoparticle incorporated block copolymer thin films were also monitored as a function of exposure time. This work can provide the fundamental information for understanding microdomain alignment in block copolymer/nanoparticle thin films under external electric fields.

Thermally Induced Mesophase Development in Ethanesilica Films via Macromolecular Templating Approach

  • Cho, Whirang;Char, Kook-Heon;Kwon, Su-Yong
    • Macromolecular Research
    • /
    • v.17 no.9
    • /
    • pp.697-702
    • /
    • 2009
  • Mesoporous ethanesilica thin film was prepared using PEO-PLGA-PEO triblock copolymers as structure-directing agents and (1,2-bis(triethoxysilyl) ethane BTESE; bridged organosilicates) as inorganic precursors via one-step sol-gel condensation of ethanesilica precursors. The mesostructure of ethanesilica films is critically dependent on the processing experimental parameters after the hydrolyzed silica sol mixture was spin-cast. This study examined the effects of the block copolymer template/organosilica precursor ratio in the casting solution and aging period before calcination of the mesostructure. It was further demonstrated that mesoscopic ordering of organosilicate thin films is induced by the rearrangement of block copolymer template/organosilica hybrid during thermal decomposition of the PEO-PLGA-PEO triblock copolymer. The mesoporous structure and morphology were characterized by SAXS, TEM and solid-state NMR measurement.

Behavior of Microdomains in Block Copolymer/Nanoparticle Nanocomposite Thin Films under Electric Field (공중합체/나노입자 복합체 박막 내 미세구조의 전기장 하에서의 거동)

  • Bae, Joonwon
    • Applied Chemistry for Engineering
    • /
    • v.28 no.3
    • /
    • pp.290-293
    • /
    • 2017
  • In this study, the fundamental behavior of microdomains in block copolymer/nanoparticle composite thin films was examined. In this experiment, polystyrene-b-poly(2-vinylpyridine) block copolymer and CdSe nanoparticles having a noncentrosymmetric property were employed. Composite hybrid thin films were produced by a spin coating method, and changes in the internal structure of composite thin films were monitored mainly by transmission electron microscopy. In summary, nanoparticles resided inside the thin film relatively intact, however, the block copolymer microdomains rotated parallel to the electric field direction. This study will be very helpful for future research activities regarding behaviors of heterogeneous composite materials under external fields.

Block Copolymer Thin Films: Nanotemplates for New Functional Nanomaterials

  • Kim, Jin-Kon;Lee, Jeong-In;Yang, Seung-Yun
    • Proceedings of the Polymer Society of Korea Conference
    • /
    • 2006.10a
    • /
    • pp.81-82
    • /
    • 2006
  • In this study, the applications of the block copolymer thin films are introduced. For this purpose, we first obtained cylindrical nanodomains in polystyrene-block-poly(methyl methacrylate) copolymer perpendicularly oriented to a substrate. Then, nanoporous templates were prepared after removing the PMMA nanodomains by UV treatment. By using electropolymerization, high density nanowire arrays of conducting polymer of poly(pyrrole) and poly( 3-hexyl thiopene) were obtained and their electric properties were measured. Also, these nanoporous thin films were found to be very useful for the separation of human Rhinovirus type 14 (HRV 14), major pathogen of a common cold in humans, from the buffer solution.

  • PDF

Epitaxial Self-Assembly of Block Copolymer Thin Film for Nanofabrication

  • Kim, Sang-Ouk
    • Proceedings of the Polymer Society of Korea Conference
    • /
    • 2006.10a
    • /
    • pp.293-293
    • /
    • 2006
  • Self-assembled nanostructures of block copolymer thin films have gathered significant attention due to their potential applications as templates for nanofabrication. However the lack of a robust strategy to control the structure formation in thin film geometries has been considered a major obstacle for the practical application. In this presentation 'epitaxial self-assembly' will be introduced as a successful strategy to control the self-assembled nanostructure of block copolymer. Chemically patterned surfaces prepared by advanced lithographic techniques successfully registered nanodomains in block copolymer thin film without any single defect over an arbitrarily large area.

  • PDF

Nano-Scale Patterning by Gold Self-Assembly on PS-PB-PS Triblock Copolymer Thin Film Templates (PS-PB-PS 삼블럭 공중합체 박막형판에서의 금의 자기응집에 의한 Nano-Scale 패턴형성)

  • Kim, G.;Libera, M.
    • Elastomers and Composites
    • /
    • v.34 no.1
    • /
    • pp.45-52
    • /
    • 1999
  • This paper describes how the gold particles self assemble on the specific phase on the microphase separated block copolymer thin film and form a well ordered patterns. For this study, polystyrene-polybutadiene-polystyrene (PS-PB-PS) triblock copolymer (30wt % PS) thin films (${\sim}100nm$) having a cylindrical morphology were cast from 0.1wt% toluene solution to be used as polymer thin film templates. The films having either vertical PS cylinders or in-plane PS cylinders in PB matrix from each different solvent evaporation condition were obtained. Cross-sectional transmission electron microscopy(TEM) was used to study the surface and bulk morphologies of block copolymer thin films. Small amount of gold particles was evaporated on a block copolymer thin film template to obtain a nano-scale pattern. When an as-cast thin film template was used, gold particles preferentially self assemble on the low surface tension PB phase and a relatively well ordered pattern in nano-scale was produced. However, after the formation of a low surface energy PB rich layer upon annealing, a gold self-assembled pattern was not observed.

  • PDF

Fabrication of P(VDF-TrFE) copolymers thin films by physical vapor deposition method (진공증착법에 의한 P(VDF-TrFE) 공중합체 박막의 제조)

  • 윤종현;정무영;이선우;박수홍;이상희;임응춘;유도현;이덕출
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2000.11a
    • /
    • pp.367-370
    • /
    • 2000
  • In this study, thin films of 70/30 and 80/20 mol% P(VDF-TrFE) copolymers were fabricated by physical vapor deposition method. In order to determine the optimum deposition condition, the copolymer thin films were fabricated in the heating temperature of 260$^{\circ}C$, 280$^{\circ}C$, and 300$^{\circ}C$. The deposition rate was measured in a real time by thickness monitor. The surface image of prepared thin films was analyzed by using AFM. From the results of TG-DTA,70/30 and 80/20 mol% P(VDF-TrFE) copolymers were observed the Curie transition point below the melting point. As the results of AFM and FT-IR analysis, we determined that the optimum deposition temperature was 300$^{\circ}C$.

  • PDF

Nanostructure formation in thin films of block copolymers prepared by controlled radical polymerization

  • Voit, B.;Fleischmann, S.;Messerschmidt, M.;Leuteritz, A.
    • Proceedings of the Polymer Society of Korea Conference
    • /
    • 2006.10a
    • /
    • pp.99-100
    • /
    • 2006
  • Orthogonally protected block copolymers of based on p-hydroxystyrene were prepared with high control via nitroxy mediated radical polymerization using an alkoxyamine as an unimolecular initiator. Thin films of partially protected block copolymer were prepared by spin or dip coating. A well defined nanostructure could be observed as a result of phase separation e.g. cylinders in a matrix oriented perpendicular or parallel to the substrate. The nanostructure of the polymeric films can be defined by the block copolymer composition and it determines surface properties and allows further, selective functionalization, e.g. via click chemistry. The thin films can be designed in a way to allow a patterning based on a thermal or photochemical stimulus.

  • PDF

Dielectric properties of 70/30 mol% P(VDF-TrFE) copolymer thin films with freqeuncy (70/30 mol% P(VDF-TrFE) 공중합체 박막의 주팍수에 따른 유전특성)

  • 윤종현;정무영;박수홍;임응춘;이상희;박상현;이덕출
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2001.07a
    • /
    • pp.470-473
    • /
    • 2001
  • In this study, 70/30 mol% P(VDF-TrFE) copolymer thin films were prepared by physical vapor deposition, and dielectric properties with frequency were investigated. From results of TA(Thermal Analysis), the Curie transition temperature and melting temperature were observed at 118.8$^{\circ}C$ and 146$^{\circ}C$, respectively. Therefore, while thin films were prepared, the substrate temperature was varied from 30$^{\circ}C$ to 90$^{\circ}C$. The dielectric constant decreased with increasing frequency. At measuring frequency of 1kHz, the relative dielectric constant increased from 3.643 to 23.998 with increasing substrate temperature from 30$^{\circ}C$ to 90$^{\circ}C$. As a result of dielectric loss factor, ${\alpha}$-relaxation and ${\beta}$-relaxation were observed near at 100Hz and 1MHz, respectively. And the magnitude of ${\alpha}$-relaxation decreased and that of ${\beta}$-relaxation increased with increasing substrate temperature.

  • PDF

Order-to-disorder Behavior of Block Copolymer Films

  • Ryu, Du-Yeol;Kim, Eun-Hye;Choe, Seung-Hun
    • Proceedings of the Materials Research Society of Korea Conference
    • /
    • 2011.05a
    • /
    • pp.6.2-6.2
    • /
    • 2011
  • Block copolymer (BCP) self-assembly in a film geometry has recently been the focus of increased research interest due to their potential use as templates and scaffolds for the fabrication of nanostructured materials. The phase behavior in a thin film geometry that confines polymer chains to the interfaces will be influenced by the interfacial interactions at substrate/polymer and polymer/air and the commensurability between the equilibrium period (L0) of the BCP and the total film thickness. We investigated the phase transitions for the films of block copolymers (BCPs) on the modified surface, like the order-to-disorder transition (ODT) by in-situ grazing incidence small angle x-ray scattering (GISAXS) and transmission electron microscopy (TEM). The selective interactions on the surface by a PS-grafted substrate provide the preferential interactions with the PS component of the block, while a random copolymer (PS-r-PMMA) grafted substrate do the balanced interfacial interactions on the surface. The thickness dependence of order-to-disorder behavior for BCP films will be discussed in terms of the surface interactions.

  • PDF