Thermally Induced Mesophase Development in Ethanesilica Films via Macromolecular Templating Approach

  • Cho, Whirang (School of Chemical and Biological Engineering, Center for Functional Polymer Thin Films, Seoul National University) ;
  • Char, Kook-Heon (School of Chemical and Biological Engineering, Center for Functional Polymer Thin Films, Seoul National University) ;
  • Kwon, Su-Yong (Division of Physical Metrology, Korea Research Institute of Standards and Science)
  • Published : 2009.09.25

Abstract

Mesoporous ethanesilica thin film was prepared using PEO-PLGA-PEO triblock copolymers as structure-directing agents and (1,2-bis(triethoxysilyl) ethane BTESE; bridged organosilicates) as inorganic precursors via one-step sol-gel condensation of ethanesilica precursors. The mesostructure of ethanesilica films is critically dependent on the processing experimental parameters after the hydrolyzed silica sol mixture was spin-cast. This study examined the effects of the block copolymer template/organosilica precursor ratio in the casting solution and aging period before calcination of the mesostructure. It was further demonstrated that mesoscopic ordering of organosilicate thin films is induced by the rearrangement of block copolymer template/organosilica hybrid during thermal decomposition of the PEO-PLGA-PEO triblock copolymer. The mesoporous structure and morphology were characterized by SAXS, TEM and solid-state NMR measurement.

Keywords

References

  1. M. Ogawa, J. Am. Chem. Soc., 116, 7941 (1994) https://doi.org/10.1021/ja00096a079
  2. I. A. Aksay, M. Trau, S. Manne, I. Honma, N. Yao, L. Zhou, P. Fenter, P. M. Eisenberger, and S. M. Gruner, Science, 273, 892 (1995) https://doi.org/10.1126/science.273.5277.892
  3. H. Yang, A. Kuperman, N. Coombs, S. Mamich-Afara, and G. A. Ozin, Nature, 379, 703 (1996) https://doi.org/10.1038/379703a0
  4. N. Nishiyama, A. Koide, Y. Egashira, and K. Ueyama, Chem. Commun., 2147 (1998)
  5. J. Y. Ying, C. P. Mehnert, and M. S. Wong, Angew. Chem. Int. Ed., 38, 56 (1999) https://doi.org/10.1002/(SICI)1521-3773(19990115)38:1/2<56::AID-ANIE56>3.0.CO;2-E
  6. S. Y. Kwon, J. C. Kim, and B. I. Choi, Thin Solid Films, 516, 2843 (2008)
  7. S. Walheim, E. Schaffer, J. Mlynek, and U. Steiner, Science, 283, 520 (1999) https://doi.org/10.1126/science.283.5401.520
  8. E. Huang, M. F. Toney, W. Volksen, D. Mecerreyes, P. Brock, H. C. Kim, C. J. Hawker, J. L. Hedrick, V. Y. Lee, T. Magbitang, R. D. Miller, and L. B. Lurio, Appl. Phys. Lett., 81, 2232 (2002) https://doi.org/10.1063/1.1507841
  9. J. L. Hedrick, R. D. Miller, C. J. Hawker, K. R. Carter, W. Volksen, D. Yoon, and M. Trollsas, Adv. Mater., 10, 1049 (1998) https://doi.org/10.1002/(SICI)1521-4095(199809)10:13<1049::AID-ADMA1049>3.0.CO;2-F
  10. A. Stein, B. J. Melde, and R. C. Schroden, Adv. Mater., 12, 1403 (2000) https://doi.org/10.1002/1521-4095(200010)12:19<1403::AID-ADMA1403>3.0.CO;2-X
  11. B. J. Cha, S. Kim, and K. Char, Macromol. Res., 13, 176 (2005) https://doi.org/10.1007/BF03219049
  12. S. Kim, K. Char, J. Hahn, J. K. Lee, D. Y. Yoon, H. W. Rhee, and M. Y. Jin, Macromol. Res., 15, 1 (2007) https://doi.org/10.1007/BF03218744
  13. S.-S. Kim, T. R. Pauly, and T. J. Pinnavaia, Chem. Commun., 1661 (2000)
  14. T. Asefa, M. J. MacLachlan, N. Coombs, and G. A. Ozin, Nature, 402, 867 (1999)
  15. G. J. Kim, H. S. Kim, Y. S. Ko, and Y. K. Kwon, Macromol. Res., 13, 499 (2005) https://doi.org/10.1007/BF03218487
  16. B. J. Melde, B. T. Holland, C. F. Blanford, and A. Stein, Chem. Mater., 11, 3302 (1999) https://doi.org/10.1021/cm9903935
  17. Y. Lu, H. Fan, N. Doke, D. A. Loy, R. A. Assink, D. A. Lavan, and C. J. Brinker, J. Am. Chem. Soc., 122, 5258 (2000) https://doi.org/10.1021/ja9935862
  18. J. Joo, T. Hyeon, and J. Hyeon-Lee, Chem. Commun., 1487 (2000)
  19. O. Dag, C. Yoshina-Ishii, T. Asefa, M. J. MacLachlan, H. Grondey, N. Coombs, and G. A. Ozin, Adv. Funct. Mater., 11, 213 (2001) https://doi.org/10.1002/1616-3028(200106)11:3<213::AID-ADFM213>3.0.CO;2-C
  20. B. D. Hatton, K. Landskron, W. Whitnall, D. D. Perovic, and G. A. Ozin, Adv. Funct. Mater., 15, 823 (2005) https://doi.org/10.1002/adfm.200400221
  21. S. S. Park and C. S. Ha, Chem. Commun., 1986 (2004)
  22. S. S. Park and C. S. Ha, Chem. Mater., 17, 3519 (2005) https://doi.org/10.1021/cm050548a
  23. Y. Lu, R. Ganguli, C. A. Drewien, M. T. Anderson, C. J. Brinker, W. Gong, and J. I. Zink, Nature, 389, 364 (1997) https://doi.org/10.1038/38699
  24. A. Selinger, P. R. Weiss, A. Nguyen, Y. Lu, R. A. Assink, W. Gong, and C. J. Brinker, Nature, 394, 256 (1998) https://doi.org/10.1038/28354
  25. D. Zhao, P. Yang, N. Melosh, J. Feng, B. F. Bradley, F. Chmelka, and G. D. Stucky, Adv. Mater., 10, 1380 (1998) https://doi.org/10.1002/(SICI)1521-4095(199811)10:16<1380::AID-ADMA1380>3.0.CO;2-8
  26. M. Ogawa, Chem. Commun., 1149 (1996)
  27. M. Ogawa and N. Masukawa, Micropor. Mesopor. Mater., 38, 35 (2000) https://doi.org/10.1016/S1387-1811(99)00297-8
  28. M. Ogawa, J. Am. Chem. Soc., 116, 7941 (1994) https://doi.org/10.1021/ja00096a079
  29. C. J. Brinker, Y. Lu, A. Sellinger, and H. Fan, Adv. Mater., 11, 579 (1999) https://doi.org/10.1002/(SICI)1521-4095(199905)11:7<579::AID-ADMA579>3.0.CO;2-R
  30. N. Nishiyama, S. Tanaka, Y. Egashira, Y. Oku, and K. Ueyama, Chem. Mater., 14, 4229 (2002) https://doi.org/10.1021/cm0201246
  31. S. Tanaka, N. Nishiyama, Y. Oku, Y. Egashira, and K. Ueyama, J. Am. Chem. Soc., 126, 4854 (2004) https://doi.org/10.1021/ja039267z
  32. J.-I. Jung, J. Y. Bae, and B.-S. Bae, J. Mater. Chem., 14, 1988 (2004) https://doi.org/10.1039/b401774a
  33. E.-B. Cho, K.-W. Kwon, and K. Char, E.-B. Cho, K.-W. Kwon, and K. Char, Chem. Mater., 13, 3837 (2001), 13, 3837 (2001)
  34. E.-B. Cho and K. Char, Chem. Mater., 16, 270 (2004) https://doi.org/10.1021/cm0346733
  35. Y. I. Jeong, D. G. Kim, and M. K. Jang, Macromol. Res., 16, 717 (2008) https://doi.org/10.1007/BF03218586
  36. J. H. Do, J. H. An, and Y. S. Joun, Macromol. Res., 16, 695 (2008) https://doi.org/10.1007/BF03218583
  37. M. J. Kim, J. H. Kim, and G. Yi, Macromol. Res., 16, 345 (2008) https://doi.org/10.1007/BF03218527
  38. H. Park, K. Y. Lee, and S. J. Lee, Macromol. Res., 15, 238 (2007) https://doi.org/10.1007/BF03218782
  39. M. Ree and I. S. Ko, Phys. High Tech., 14, 2 (2005)
  40. D. Grosso, F. Cagnol, G. J. de A. A. Soler-Illia, E. L. Crepaldi, H. Amenitsch, A. B.-Bruneau, A. Bourgeois, and C. Sanchez, Adv. Funct. Mater., 14, 30 (2004)
  41. M. Choi, B. Lim, and J. Jang, Macromol. Res., 16, 200 (2008) https://doi.org/10.1007/BF03218853
  42. S. Besson, T. Gacoin, C. Jacquiod, C. Ricolleau, D. Babonneau, and J.-P. Boilot, J. Mater. Chem., 10, 1331 (2000) https://doi.org/10.1039/a908845h
  43. S. P. Naik, S. Yamakita, M. Ogura, and T. Okubo, Micropor. Mesopor. Mater., 75, 51 (2004) https://doi.org/10.1016/j.micromeso.2004.06.028
  44. S. P. Naik, S. Yamakita, M. Ogura, and T. Okubo, Micropor. Mesopor. Mater., 75, 51 (2004)
  45. S. P. Naik, M. Ogura, H. Sasakura, Y. Yamaguchi, Y. Sasaki, and T. Okubo, Thin Solid Films, 495, 11 (2006) https://doi.org/10.1016/j.tsf.2005.08.234
  46. M. Ogura, H. Miyoshi, S. P. Naik, and T. Okubo, J. Am. Chem. Soc., 126, 10937 (2004) https://doi.org/10.1021/ja047785j
  47. D. Grosso, F. Babonneau, G. Soler-Illia, P. A. Albouy, and H. Amenitsch, Chem. Commun., 748 (2002)
  48. X. Li, S. Barua, K. Rege, and B. Vogt, Langmuir, 24, 11935 (2008) https://doi.org/10.1021/la801849n
  49. M. Ogawa, J. Chem. Soc., Chem. Commun., 1149 (1996)
  50. D. Grosso, A. R. Balkenende, P. A. Albouy, A. Ayral, H. Amenitsch, and F. Babonneau, Chem. Mater., 13, 1848 (2001) https://doi.org/10.1021/cm001225b
  51. S. Besson, T. Gacoin, C. Jacquiod, C. Ricolleau, D. Babonneaud, and J.-P. Boilot, J. Mater. Chem., 10, 1331 (2000) https://doi.org/10.1039/a908845h