• Title/Summary/Keyword: cooperative sensing

Search Result 176, Processing Time 0.025 seconds

The Operational Procedure on Estimating Typhoon Center Intensity using Meteorological Satellite Images in KMA

  • Park, Jeong-Hyun;Park, Jong-Seo;Kim, Baek-Min;Suh, Ae-Sook
    • Proceedings of the KSRS Conference
    • /
    • v.1
    • /
    • pp.278-281
    • /
    • 2006
  • Korea Meteorological Administration(KMA) has issued the tropical storm(typhoon) warning or advisories when it was developed to tropical storm from tropical depression and a typhoon is expected to influence the Korean peninsula and adjacent seas. Typhoon information includes current typhoon position and intensity. KMA has used the Dvorak Technique to analyze the center of typhoon and it's intensity by using available geostationary satellites' images such as GMS, GOES-9 and MTSAT-1R since 2001. The Dvorak technique is so subjective that the analysis results could be variable according to analysts. To reduce the subjective errors, QuikSCAT seawind data have been used with various analysis data including sea surface temperature from geostationary meteorological satellites, polar orbit satellites, and other observation data. On the other hand, there is an advantage of using the Subjective Dvorak Technique(SDT). SDT can get information about intensity and center of typhoon by using only infrared images of geostationary meteorology satellites. However, there has been a limitation to use the SDT on operational purpose because of lack of observation and information from polar orbit satellites such as SSM/I. Therefore, KMA has established Advanced Objective Dvorak Technique(AODT) system developed by UW/CIMSS(University of Wisconsin-Madison/Cooperative Institude for Meteorological Satellite Studies) to improve current typhoon analysis technique, and the performance has been tested since 2005. We have developed statistical relationships to correct AODT CI numbers according to the SDT CI numbers that have been presumed as truths of typhoons occurred in northwestern pacific ocean by using linear, nonlinear regressions, and neural network principal component analysis. In conclusion, the neural network nonlinear principal component analysis has fitted best to the SDT, and shown Root Mean Square Error(RMSE) 0.42 and coefficient of determination($R^2$) 0.91 by using MTSAT-1R satellite images of 2005. KMA has operated typhoon intensity analysis using SDT and AODT since 2006 and keep trying to correct CI numbers.

  • PDF

An Automatic Repeating Protocol in Cooperative Spectrum Sharing (협력적 스펙트럼 공유의 자동 반복 프로토콜)

  • Kong, Hyung-Yun
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.13 no.6
    • /
    • pp.101-108
    • /
    • 2013
  • In this paper, we propose a method in which the negative acknowledge (NACK) message is used as command for cooperation and spectrum sharing. This allows for an automatic request for cooperation and sharing when the direct link of the primary user is in outage, and also allows for saving the number of control messages in cooperation-spectrum sharing based paradigm. In the sharing phase, the selected relay shares a power fraction of $1-{\alpha}$ for secondary transmitted signal while the remaining of ${\alpha}$ is for primary retransmitted signal. In the case of no relay collected, primary transmitter uses NACK as a command to retransmit the signal with fully power fraction (${\alpha}=1$). Both systems are assumed to employ BPSK signals. In this scheme, we propose the joint optimal decoding in the secondary user. The frame error rate (FER) performance at both systems is then analyzed. The theoretical and simulation results validate the analysis and confirm the efficiency of the protocol.

Energy Harvesting Technique for Efficient Wireless Cognitive Sensor Networks Based on SWIPT Game Theory

  • Mukhlif, Fadhil;Noordin, Kamarul Ariffin Bin;Abdulghafoor, Omar B.
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.14 no.6
    • /
    • pp.2709-2734
    • /
    • 2020
  • The growing demand to make wireless data services 5G compatible has necessitated the development of an energy-efficient approach for an effective new wireless environment. In this paper, we first propose a cognitive sensor node (CSN) based game theory for deriving energy via a primary user-transmitted radio frequency signal. Cognitive users' time was segmented into three phases based on a time switching protocol: energy harvest, spectrum sensing and data transmission. The proposed model chooses the optimal energy-harvesting phase as the effected factor. We further propose a distributed energy-harvesting model as a utility function via pricing techniques. The model is a non-cooperative game where players can increase their net benefit in a selfish manner. Here, the price is described as a function pertaining to transmit power, which proves that the proposed energy harvest game includes Nash Equilibrium and is also unique. The best response algorithm is used to achieve the green connection between players. As a result, the results obtained from the proposed model and algorithm show the advantages as well as the effectiveness of the proposed study. Moreover, energy consumption was reduced significantly (12%) compared to the benchmark algorithm because the proposed algorithm succeeded in delivering energy in micro which is much better compared to previous studies. Considering the reduction and improvement in power consumption, we could say the proposed model is suitable for the next wireless environment represented in 5G.

A Study on the learning styles in an e-learning and Psychological Types in University Student (대학생의 e-러닝 학습양식과 성격유형에 관한 연구)

  • Kim, Miyoung;Lee, Jahee;Choi, Wonsik
    • 대한공업교육학회지
    • /
    • v.31 no.2
    • /
    • pp.332-349
    • /
    • 2006
  • The purpose of this study is to identify the relationship between the University students' learning styles in an e-learning according to the major field and learning styles in an e-learning according to the psychological types. The results of the research are as follows: First, The Major field made no difference to the learning styles in e-learning. E-learning styles of University student are as follows : the environment-dependent and self-directed learning style, positive and cooperative learning style, environment-independent and self-directed learning style. Second, In comparison with the boys and girl's the learning styles in e-learning, there were individual differences. But the environment-dependent and self-taught learning style was the highest learning style in Boys and Girl's but, especially there was more high in Girl's. Third, Amount to use internet made no difference to the learning styles in e-learning. The difference of learning styles in an e-learning environment according to Extraversion-Introversion, Sensing-Intuition, Thinking-Feeling among Psychological Types were statistically meaningless.

IoT Middleware for Effective Operation in Heterogeneous Things (이기종 사물들의 효과적 동작을 위한 사물인터넷 미들웨어)

  • Jeon, Soobin;Han, Youngtak;Lee, Chungshan;Seo, Dongmahn;Jung, Inbum
    • KIISE Transactions on Computing Practices
    • /
    • v.23 no.9
    • /
    • pp.517-534
    • /
    • 2017
  • This paper proposes an Internet of Things (IoT) middleware called Middleware for Cooperative Interaction of Things (MinT). MinT supports a fully distributed IoT environment in which IoT devices directly connect to peripheral devices, easily constructing a local or global network and sharing their data in an energy efficient manner. MinT provides a sensor abstract layer, a system layer and an interaction layer. These layers enable integrated sensing device operations, efficient resource management, and interconnection between peripheral IoT devices. In addition, MinT provides a high-level API, allowing easy development of IoT devices by developers. We aim to enhance the energy efficiency and performance of IoT devices through the performance improvements offered by MinT resource management and request processing. The experimental results show that the average request rate increased by 25% compared to existing middlewares, average response times decreased by 90% when resource management was used, and power consumption decreased by up to 68%. Finally, the proposed platform can reduce the latency and power consumption of IoT devices.

A Resource Adaptive Data Dissemination Protocol for Wireless Sensor Networks (무선 센서 네트워크를 위한 자원 적응형 데이터 확산프로토콜)

  • Kim, Hyun-Tae;Choi, Nak-Sun;Jung, Kyu-Su;Jeon, Yeong-Bae;Ra, In-Ho
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.10 no.11
    • /
    • pp.2091-2098
    • /
    • 2006
  • In this paper, it proposes a protocol of resource adaptive data dissemination for sensor nodes in a wireless sensor network. In general, each sensor node used in a wireless sensor network delivers the required information to the final destination by conducting cooperative works such as sensing, processing, and communicating each other using the battery power of a independent sensor node. So, a protocol used for transferring the acquired information to users through the wireless sensor network can minimize the power consumption of energy resource given to a sensor node. Especially, it is very important to minimize the total amount of power consumption with a method for handling the problems on implosion. data delivery overlapping, and excessive message transfer caused by message broadcasting. In this paper, for the maintaining of the shortest path between sensor nodes, maximizing of the life time of a sensor node and minimizing of communication cost, it presents a method for selecting the representative transfer node for an event arising area based on the negotiation scheme and maintaining optimal transfer path using hop and energy information. Finally, for the performance evaluation, we compare the proposed protocol to existing directed diffusion and SPIN protocol. And, with the simulation results, we show that the proposed protocol enhances the performance on the power consumption rate when the number of overall sensor nodes in a sensor network or neighbor sensor nodes in an event area are increased and on the number of messages disseminated from a sensor node.