• Title/Summary/Keyword: cooling pattern

Search Result 262, Processing Time 0.026 seconds

Development of high-strength ion nitrided gear (고강도 이온질화 기어의 개발)

  • Kim, Young-Hoon;Sun, Cheol-Gon;Kim, Han-Goon
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.7 no.3
    • /
    • pp.184-189
    • /
    • 1994
  • The heat treatment charaterristic of SCM 440 and B 16 steels has been investigated in various condition(A, B and C) to the effect of heat treatment on mechanical properties, and the following results were obtained. 1. We are obtained a good nitriding characteristic in bainitic structure than other heat treatment cycle in our experiment. 2. Fatigue characteristic has shown in order of B)C)A condition as heat treatment cycle. 3. The effective hardening depth and fatigue characteristic has been excellented in B 16 than SCM 440 after the nitriding and Q. T for Band C condition. 4. Nitriding depth has been increased in addition of Cr, V and the nitriding efficiency is increased as easiness of banite formation to wide range of cooling rate by addition of Mo. 5. The depth of compound layer in parallel surface, notched slop plane and notched bottom has been varied to the nitriding depth of 5, 4 and 3 ${\mu}$ in relatively uniform pattern after 10h nitriding treatment for SCM 440 into A condition.

  • PDF

Quench recovery characteristics of YBCO thin film type superconducting fault current limiter (YBCO 박막형 초전도 한류소자의 퀜치 회복 특성에 관한 연구)

  • Yim, Seong-Woo;Sim, Jung-Wook;Kim, Hye-Rim;Hyun, Ok-Bae;Kim, Ho-Min;Park, Kwon-Bae;Lee, Bang-Wook;Oh, Il-Sung
    • Proceedings of the KIEE Conference
    • /
    • 2006.07b
    • /
    • pp.711-712
    • /
    • 2006
  • For the application of superconducting fault current limiters(SFCLs) to the protection system, quench recovery characteristics of Au/YBCO thin film were investigated. The Au/YBCO thin film was designed as a SFCL element with a bi-spiral pattern. The SFCL element limited the fault current successfully. For the analysis of the recovery to superconducting state, we measured resistance variation of the SFCL element after the quench. In addition, in order to investigate the dependence of quench characteristics of SFCL on the $LN_2$ cooling condition, we measured the recovery time under a pressure of 1, 2 and 3 atm. As the results, the recovery time increased in proportion to the duration of the fault currents. In the sub-cooled condition, while the quench development was exactly the same, the recovery time was shortened as the pressure increased.

  • PDF

Fault Detection and Diagnosis Simulation for CAV AHU System (정풍량 공조시스템의 고장검출 및 진단 시뮬레이션)

  • Han, Dong-Won;Chang, Young-Soo;Kim, Seo-Young;Kim, Yong-Chan
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.22 no.10
    • /
    • pp.687-696
    • /
    • 2010
  • In this study, FDD algorithm was developed using the normalized distance method and general pattern classifier method that can be applied to constant air volume air handling unit(CAV AHU) system. The simulation model using TRNSYS and EES was developed in order to obtain characteristic data of CAV AHU system under the normal and the faulty operation. Sensitivity analysis of fault detection was carried out with respect to fault progress. When differential pressure of mixed air filter increased by more than about 105 pascal, FDD algorithm was able to detect the fault. The return air temperature is very important measurement parameter controlling cooling capacity. Therefore, it is important to detect measurement error of the return air temperature. Measurement error of the return air temperature sensor can be detected at below $1.2^{\circ}C$ by FDD algorithm. FDD algorithm developed in this study was found to indicate each failure modes accurately.

An Experimental Study of Injection Molding for Multi-beam Sensing Lens Using The Change of Gate Geometry (금형 게이트 크기 변화에 따른 멀티빔 센서용 렌즈 사출성형성 향상에 관한 연구)

  • Cho, S.W.;Kim, J.S.;Yoon, K.H.;Kim, J.D.
    • Transactions of Materials Processing
    • /
    • v.20 no.5
    • /
    • pp.333-338
    • /
    • 2011
  • Rapidly developing IT technologies in recent years have raised the demands for high-precision optical lenses used for sensors, digital cameras, cell phones and optical storage media. Many techniques are required to manufacturing high-precision optical lenses, including multi-beam sensing lenses investigated in the current study. In the case of injection molding for thick lenses, a shrinkage phenomenon often occurs during the process. This shrinkage is known to be the main reason for the lower optical quality of the lenses. In the present work, a CAE analysis was conducted simultaneously with experiments to understand and minimize this phenomenon. In particular, the sectional area of a gate was varied in order to understand the effects of packing and cooling processes on the final shrinkage pattern. As a result of this study, it was demonstrated that a dramatic reduction of the shrinkage could be obtained by increasing the width of the gate.

ANALYSES OF FLUID FLOW AND HEAT TRANSFER INSIDE CALANDRIA VESSEL OF CANDU-6 REACTOR USING CFD

  • YU SEON-OH;KIM MANWOONG;KIM HHO-JUNG
    • Nuclear Engineering and Technology
    • /
    • v.37 no.6
    • /
    • pp.575-586
    • /
    • 2005
  • In a CANDU (CANada Deuterium Uranium) reactor, fuel channel integrity depends on the coolability of the moderator as an ultimate heat sink under transient conditions such as a loss of coolant accident (LOCA) with coincident loss of emergency core cooling (LOECC), as well as normal operating conditions. This study presents assessments of moderator thermal-hydraulic characteristics in the normal operating conditions and one transient condition for CANDU-6 reactors, using a general purpose three-dimensional computational fluid dynamics code. First, an optimized calculation scheme is obtained by many-sided comparisons of the predicted results with the related experimental data, and by evaluating the fluid flow and temperature distributions. Then, using the optimized scheme, analyses of real CANDU-6 in normal operating conditions and the transition condition have been performed. The present model successfully predicted the experimental results and also reasonably assessed the thermal-hydraulic characteristics of a real CANDU-6 with 380 fuel channels. A flow regime map with major parameters representing the flow pattern inside a calandria vessel has also proposed to be used as operational and/or regulatory guidelines.

Inductively Coupled Plasma Chemical Vapor Deposition System for Thin Film Ppassivation of Top Emitting Organic Light Emitting Diodes (전면발광 유기광소자용 박막 봉지를 위한 유도결합형 화학 기상 증착 장치)

  • Kim Han-Ki
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.19 no.6
    • /
    • pp.538-546
    • /
    • 2006
  • We report on characteristics of specially designed inductively-coupled-plasma chemical vapor deposition (ICP-CVD) system for top-emitting organic light emitting diodes (TOLEDs). Using high-density plasma on the order of $10^{11}$ electrons/$cm^3$ generated by linear-type antennas connected in parallel and specially designed substrate cooling system, a 100 nm-thick transparent $SiN_{x}$ passivation layer was deposited on thin Mg-Ag cathode layer at substrate temperature below $50\;^{\circ}C$ without a noticeable plasma damage. In addition, substrate-mask chucking system equipped with a mechanical mask aligner enabled us to pattern the $SiN_x$ passivation layer without conventional lithography processes. Even at low substrate temperature, a $SiN_x$ passivation layer prepared by ICP-CVD shows a good moisture resistance and transparency of $5{\times}10^{-3}g/m^2/day$ and 92 %, respectively. This indicates that the ICP-CVD system is a promising methode to substitute conventional plasma enhanced CVD (PECVD) in thin film passivation process.

Numerical Analysis in Unsteady State on variation of Diameter and Environmental Velocity of Carbon Heating Source (탄소발열체의 외부유속 및 직경변화에 대한 비정상상태에서의 수치해석적 연구)

  • Bae, K.Y.;Lee, Y.H.;Lee, S.Y.;Lee, C.S.;Kim, B.G.;Lee, S.H.
    • Journal of Power System Engineering
    • /
    • v.10 no.4
    • /
    • pp.25-30
    • /
    • 2006
  • This paper represents the numerical analysis in unsteady state on the variation of diameter and environmental velocity of carbon heating source. In general heating system, the oil and sheath heater is widely used, but these systems have many problems. So, the heating source with carbon ingredient has been researched in many country about manufacture, thermal and electrical properties. In this research, the carbon heating source was studied through numerical analysis on several conditions of unsteady state, heat generation, diameter and environmental velocity. The temperature distributions at steady state are appeared as a non-proportional linear pattern with variations of environmental velocity due to the Nesselt number with convective heat flux is proportioned to 0.805 of Reynolds number. As the radius is increasing, the temperature distributions is appeared the minus tilt because of the environmental condition is cooling by constant temperature. So, the correlation equation between temperature at steady state and environmental velocity was obtained.

  • PDF

Mechanical Behavior and Physical Properties of Zr-Ti-Cu-Ni-Be Amorphous and Partially Crystallized Alloy Extracted from a Commercial Golf Club Head (Zr-Ti-Cu-Ni-Be 합금으로 제조된 상용 골프클럽헤드의 부위별 물리적 특성 및 기계적 거동)

  • Choi, Young-Chul;Hong, Sun-Ig
    • Korean Journal of Materials Research
    • /
    • v.15 no.11
    • /
    • pp.697-704
    • /
    • 2005
  • The deformation behavior of a bulk amorphous and crystallized amorphous $Zr_{22.5}Ti_{14}Cu_{12.5}Ni_{10}Be_{22.5}$ alloy extracted from a commercial golf club head was characterized at room temperature ana $300^{\circ}C$. At room temperature, amorphous specimens revealed higher yield stress and ductility than partially crystallized alloy specimens. Amorphous alloy displayed some plasticity before fracture, which resulted from strain hardening and repeated crack initiation and propagation. The fracture is mainly localized on one major shear band, and the compressive fracture angle of the amorphous specimen between the stress axis and the fracture plane was about $40^{\circ}$ Scanning electron microscope observations revealed mainly a vein-like structure in the amorphous alloy But the fracture surface of partially crystallized amorphous alloy consisted of vein-like and featureless fracture structure. The partially crystallized alloy extracted from the thick part of the club fractured in the elastic region, at a much lower stress level than the amorphous, suggesting that relatively coarse crystal particles formed during cooling cause the brittle fracture.

EXPERIMENTS ON THE INTERACTION OF WATER SPRAYS WITH POOL FIRES

  • Han, Yong-Shik;Kim, Myung-Bae;Shin, Hyun-Dong
    • Proceedings of the Korea Institute of Fire Science and Engineering Conference
    • /
    • 1997.11a
    • /
    • pp.518-525
    • /
    • 1997
  • A series of measurements and visualization to investigate the interaction of water sprays with pool fires is presented. Fire source is a small-scale pool burner with methanol, ethanol and gasoline. Measurements of temperatures, $O_2$, $CO_2$, and CO concentrations along the plume centerline are carried out to observe pool fire structures without water sprays. Visualization by the Ar-ion laser sheet shows flow pattern of droplets of the sprays above the pool fires. It is observed that in the case of methanol and ethanol, water sprays continuously penetrate into the center of fuel surfaces. The gasoline pool fire allows intermittent penetration of water sprays because of pulsating characteristics of the gasoline flame. To evaluate the cooling effect of the fuel surface by the sprays, the temperature was measured at the fuel surface. As soon as the mists reach the fuel surface of methanol and ethanol, the temperatures of the fuel surface decrease rapidly below the boiling point, and then the fires are extinguished. Due to the application of mist upon the gasoline fire, though the fuel temperature decrease abruptly at the time of the injection, such a rapid decrease do not continue till the extinction point.

  • PDF

Measurement and Analysis of Energy Consumption of HVAC Equipment of a Research Building (연구용 건물의 열원 및 공조기기의 에너지 소비량 측정 및 분석)

  • Kim Seong-Sil;Kim Youngil
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.16 no.10
    • /
    • pp.914-922
    • /
    • 2004
  • In this study, measurement and analysis of energy consumption of a research building have been conducted. The energy audit procedure includes monitoring of electricity and LNG consumption over a period of three yews from 2000 to 2002. Data acquisition system for collecting energy consumption data of HVAC equipment such as chillers, fan filter units, AHUs, cooling towers, boilers, pumps, fan coil units, air compressors and etc. has been installed in a building located in Seoul. Data collected at an interval of 1 minute are analyzed for studying the energy consumption pattern of a research building. Percentage of energy consumption of all HVAC equipment is $51.0\%$ in 2000, $55.4\%$ in 2001, and $62.3\%$ in 2002, respectively. Electricity consumption of chillers accounts for $17.6\%$ of the total energy consumption, which is the largest. Annual energy consumption-rate per unit area is $840.5Mcal/m^2{\cdot}y$ in 2000, $1,064.8Mcal/m^2{\cdot}y$ in 2001, and $1,393.0Mcal/m^2{\cdot}y$ year 2002, respectively.