• Title/Summary/Keyword: cooling pad

Search Result 61, Processing Time 0.018 seconds

Experimental Study of Moisture-Wicking Fabric as Cooling Pad for Novel Rotary Direct Evaporative Cooler

  • Sang-Hwan Park;Jae-Weon Jeong
    • International Journal of High-Rise Buildings
    • /
    • v.12 no.4
    • /
    • pp.335-341
    • /
    • 2023
  • This study proposes a novel rotary direct evaporative cooler and investigates the potential of a moisture-wicking fabric as a cooling pad for the proposed evaporative cooler. The rotary direct evaporative cooler rotates the cooling pad to reduce the water and energy consumption of the pump compared to those of existing direct evaporative coolers. A moisture-wicking fabric is considered as the material of the cooling pad, because of its high moisture-wicking property, enhancing water evaporation. Experiments are performed under various inlet air conditions while measuring the air temperature, relative humidity, air velocity, and differential pressure. The evaporative cooling efficiency and impacts of the inlet air temperature and air velocity on the cooling performance are also evaluated. The results demonstrate the potential of the moisture-wicking fabric as cooling pad of direct evaporative cooler.

The Cooling Effect of PAD Location and FAN Capacity on Greenhouse (PAD 위치 및 FAN 용량에 따른 온실의 냉방효과)

  • 이석건;이종원;이현우;김길동
    • Proceedings of the Korean Society of Agricultural Engineers Conference
    • /
    • 1999.10c
    • /
    • pp.399-404
    • /
    • 1999
  • This study were performed to find the cooling effect and to provide design data during summer season for the Pad& Fan system of greenhouse . The temperature variation along the greenhouse width were analyzed. Also, the effect of the pad location and fan capacity on the cooling of the greenhouse were analyzed. While Pad &Fan systems were operating the temperatures in greenhouse were very different along the meausring locations. It is recommeded that PAD location and FAN capacity should be considered to design the Fan and Pad system in order to provide greenhouse the optimum temperature condition.

  • PDF

Theoretical Analysis on the Heat and Mass Transfer in a Sorption Cool Pad (흡습 냉각 패드에서의 열 및 물질전달에 관한 연구)

  • 황용신;이대영;박봉철
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.16 no.2
    • /
    • pp.167-174
    • /
    • 2004
  • A sorption cool pad brings cooling effect without any pre-cooling, nor any external energy supply. It uses evaporative cooling effect stimulated by the desiccative sorption. In this paper, heat and mass transfer in the sorption cool pad are investigated theoretically. The evaporative cooling process caused by the desiccant is modeled and analyzed considering the sorption characteristics of the desiccant. Two nondimensional parameters are found to dominate the cooling process: one is related to the psychrometric characteristics and the other is to the sorption capacity of the desiccant. The former decides the time to reach the lowest temperature and the later controls the time duration of the cooling effect being sustained.

Greenhouse Cooling Using Air Duct and Integrated Fan and Pad System (일체형 팬 앤 패드 시스템과 에어 덕트를 이용한 온실 냉방)

  • Nam, Sang-Woon;Kim, Young-Shik
    • Journal of Bio-Environment Control
    • /
    • v.20 no.3
    • /
    • pp.176-181
    • /
    • 2011
  • The fan and pad evaporative cooling system is one of the main cooling methods in greenhouses. Its efficiency is very high, but it has some disadvantages as temperature gradient in greenhouse is large. This study was conducted to reduce the internal temperature gradients in the fan and pad cooling greenhouses. Experiments on cooling performance were carried out in a greenhouse equipped with air duct and integrated fan and pad system as an idea of this study. It showed that the cooling efficiency of an integrated fan and pad system was 75.7% in the first stage and 88.6% in the second stage. When this cooling system was operated for an unshaded and a shaded greenhouse, there were cooling effects of $5.7\sim7.6^{\circ}C$ and $7.4\sim9.7^{\circ}C$ to the control greenhouse, respectively. Maximum temperature differences in a cooling greenhouse, with a length of 18m, were $1.6\sim1.7^{\circ}C$ for shaded conditions and $2.3\sim2.7^{\circ}C$ for unshaded conditions. This greenhouse cooling method, with air duct and integrated fan and pad system, can reduce about 40~50% of the internal temperature gradients in the usual fan and pad cooling greenhouses.

Conceptual Development of a Subminiature Cool Pad Applying Sorption Cooling Effect (흡습 냉각 원리를 이용한 소형 냉각 패드에 관한 연구)

  • 황용신;이대영;김우승
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.16 no.2
    • /
    • pp.121-127
    • /
    • 2004
  • This paper describes conceptual development and idea-verification of a sub-miniature portable cooler which dose not necessitate any pre-cooling nor any external energy supply. The basic principle of the cooling mechanism is the vaporization of water and sub-sequent cooling due to the evaporative latent heat loss. In this work, the vaporization of the water is stimulated by desiccant material to improve the cooling effect. The evaporative cooling caused by the desiccant is modeled and analyzed considering the sorption characteristics of the desiccant. In addition, the portable cooler is fabricated in the shape of a thin pad, and its cooling characteristics are tested and compared with the analytic results.

Cooling Efficiency and Growth of Tomato as Affected by Root Zone Cooling Methods in Summer Season (고온기 근권냉방방식에 따른 냉방효과와 토마토 생육)

  • 이재한;권준국;권오근;최영하;박동금
    • Journal of Bio-Environment Control
    • /
    • v.11 no.2
    • /
    • pp.81-87
    • /
    • 2002
  • This study was conducted to investigate the cooling efficiency and growth of tomatoes by root zone cooling device using a pad-box and cultivated system. The structure of the root zone cooling system using a pad-box was four piece of pads bonded an the side and a fan set at the bottom. Cool wind was generated by the outside air which was punched at intervals of 10 cm along three rows. Cold wind flowed to the root zone in the culture medium. The root zone cooling efficiency of cold wind generation by using a pad-box flowing through a wet-pad was determined. Major characteristic of this cuttural system consist of bed filled with a perlite medium and a ventilation pipe using PVC. The cold wind generation by a pad box (CWP) was compared to that of cold wind generation by a radiator (CWR), cold water circulation using a XL-pipe (CWX) and the control (non-cooling). When the temperature of water supplied was 16.2-18.4$^{\circ}C$, temperatures in the medium were 20.5~23.2$^{\circ}C$ for CWP 22.7~24.2$^{\circ}C$ for CWR, 22.8~24.27$^{\circ}C$ for CWX and 23.1~-29.6$^{\circ}C$ for the control. The results show that the cold wind temperature using the pad-box was lower by 1~2$^{\circ}C$ than that of cold water circulation in the XL-pipe and lower by 5~6$^{\circ}C$ than that of the control. Growth such as leaf length, leaf width, fresh weight and dry weight, was greater in three root zone cooling methods than in the control. Root activity was higher in the rat zone cooling methods than in the control. However, there was no significant difference among root zone cooling methods.

Development of Night Cooling System for Greenhouse Using Cool Air and Water from an Abandoned Coal Mine (폐광의 냉기 및 냉수를 이용한 온실의 야냉 시스템 개발)

  • Kang, Whoa-Seug;Kang, Wie-Soo;Lee, Gwi-Hyun;Oh, Jae-Heun;Kim, Ii-Seop;Yoo, Keun-Chang
    • Korean Journal of Environmental Agriculture
    • /
    • v.15 no.2
    • /
    • pp.223-231
    • /
    • 1996
  • This study was to develop the most effective cooling system which is needed to cool greenhouse during summer night for getting up early blooming of strawberry. Various cooling systems were designed and constructed to use cool air and water from an abandoned coal mine. Cooling systems built for this study included an evaporative cooling system with cooling pad, heat exchanger using small or large radiator, and cooling duct for drawing cool air from coal mine. The cooling pad, small or large radiator and cooling duct were individually tested. Also, combined cooling system was tested by operating cooling pad, small radiator, and cooling duct simultaneously. The results in this study showed that individual cooling systems such as cooling pad, small radiator, and cooling duct had about the same effect on cooling greenhouse. The combined cooling system had little better cooling effect than individual cooling system except the large radiator. The most effective cooling system for cooling of greenhouse was obtained by using a large radiator as the heat exchanger. By using a large radiator, temperature in greenhouse was dropped into about $15^{\circ}C$ when outside temperature was $23-24^{\circ}C$ during summer night.

  • PDF

Actual State of Practical Use and Cooling Effect of Evaporative Cooling Systems (증발냉각시스템의 활용실태 및 냉방효과)

  • 김문기;유인호;김기성
    • Journal of Bio-Environment Control
    • /
    • v.8 no.4
    • /
    • pp.281-287
    • /
    • 1999
  • In order to take a good look at effectiveness of cooling of Fog system and Pad-Fan system, we chose 49 farm households which were installed evaporative cooling system and 2 farm households which were installed Pad-Fan system and Fog system for a test. We execute the test on 29 households out of 49.6 households, which were installed Pad-Fan system, were able to use; however, 6 household out of 9 which were installed Fog system couldn't use it. The main reason was the clogged on nozzle. The cooling efficiency on Pad-Fan system was 77.4%, but it was very poor on Fog system. Since there are many problems on Fog system, we need more research on size of fog, the location of nozzle, control of Fog systems.

  • PDF

The temperature and humidity variation along the width of greenhouse with Pad & Fan system (PAD & FAN 시스템에 대한 온실폭방향의 온. 습도 변화)

  • 이종원;이석건;이현우;김란숙;최상환
    • Proceedings of the Korean Society of Agricultural Engineers Conference
    • /
    • 1998.10a
    • /
    • pp.262-268
    • /
    • 1998
  • This study were performed to find the cooling effect and to provide design data during summer season. for the Pad & Fan system of Venlo type greenhouse. The temperature and humidity variation along the greenhouse width and wind velocity in the greenhouse were surveyed. Also, the influence of shading on the cooling effect were analyzed. While Pad & Fan system were operated, the temperature, humidity and wind velocity in greenhouse were different by the distance from the Pad and the height from the ground. The temperature difference between Pad and Fan was about 8.1$^{\circ}C$~10.4$^{\circ}C$ without shading and about 4.4$^{\circ}C$~5.5$^{\circ}C$ with shading.

  • PDF

Cooling Effects of Fan and Pad Cooling System (Fan and Pad Cooling System의 냉방효과)

  • 이석건;이종원;이현우;김성식
    • Proceedings of the Korean Society for Bio-Environment Control Conference
    • /
    • 1995.10a
    • /
    • pp.78-81
    • /
    • 1995
  • 시설농업이 상업화되면서 점차 생산시설의 단지화, 대형화 추세가 두드러지고 있으며, 특히 시설농업의 현대화로 고정화, 자동화가 이루어지면서 주년생산을 위한 년중재배체계가 도입되고 있다. 이러한 안정적인 주년생산을 위해서는 우선적으로 해결되어야 할 과제 중 하나가 여름철의 온실 환경관리중 고온극복이다. 하지만 온실내의 미기상중에서 온도를 최소로 유지하는 냉방이 보온보다 어려운 실정이다. (중략)

  • PDF